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Abstract


We generalize the orthogonally transitive (OT) G2 spike solution to the
non-OT G2 case.
This is achieved by applying Geroch’s transformation on a Kasner seed.
The new solution contains two more parameters than the OT G2 spike
solution.
Unlike the OT G2 spike solution, the new solution always resolves its
spike.







Classification of G2 solutions


Consider vacuum solutions of Einstein’s field equations that admit two
Killing vector fields (KVFs) ξ and η.
The two KVFs form a G2 group, which may be Abelian (iff the KVFs
commute) or not.
A KVF ξ is said to be hypersurface-orthogonal (HO) if it satisfies


ξ[a;bξc] = 0.


A G2 group is said to be orthogonally transitive (OT) if the two KVFs ξ
and η satisfy


ξ[a;bξcηd ] = 0, η[a;bηcξd ] = 0.


If one of the KVFs in an OT G2 group is HO, then the other KVF is also
HO, and such a group is called diagonal, because the metric for the space
spanned by the KVFs can be made diagonal.







Wainwright’s classification of G2 solutions with spacelike
KVFs


Wainwright 1981 classified G2 solutions with spacelike KVFs as follows:


G2I : Abelian G2


Class A: G2 is non-OT
Class A(i): no HO KVF
Class A(ii): one HO KVF


Class B: G2 is OT
Class B(i): no HO KVF
Class B(ii): two HO KVFs (i.e. diagonal)


G2II : Non-Abelian G2


Sintes 1996 similarly classified G2II .







Introduction


According to general relativity, in the asymptotic regime near spacelike
singularities, a spacetime would oscillate between Kasner states. The
BKL conjectures hold except where and when spikes occur. Spikes are a
recurring inhomogeneous phenomenon in which the fabric of spacetime
temporarily develops a spiky structure as the spacetime oscillates between
Kasner states.
Previously, the orthogonally transitive (OT) G2 spike solution, which is
important in describing the recurring spike oscillation, was generated by
applying the Rendall-Weaver transformation on a Kasner seed solution.
The solution is unsatisfactory, however, in that it contains permanent
spikes, and there is a debate whether permanent spike are actually
unresolved spike transitions in the oscillatory regime or are really
permanent. In other words, would the yet undiscovered non-OT G2 spike
solution contain permanent spikes? The proponents for permanent spikes
argue that the spatial derivative terms of a permanent spike are
negligible, and hence the spike stays permanent. The opponents base
their argument on numerical evidence that the permanent spike is
mapped by an R1 frame transition to a regime where the spatial
derivative terms are not neglibigle, which allows the spike to resolve.







Iwasawa frame


To settle the debate, we need to find the non-OT G2 spike solution. It
was found that Geroch’s transformation would generate the desired
solution, which always resolves its spike.
For our purpose, we express a metric gab using the Iwasawa frame, as
follows. Indicies 0, 1, 2, 3 corresponds to coordinates τ, x , y , z . Assume
zero vorticity (zero shift). The metric components in terms of b’s and n’s
are given by


g00 = −N2


g11 = e−2b1 , g12 = e−2b1n1, g13 = e−2b1n2


g22 = e−2b2 + e−2b1n21, g23 = e−2b1n1n2 + e−2b2n3


g33 = e−2b3 + e−2b1n22 + e−2b2n23.


One advantage of the Iwasawasa frame is that the determinant of the
metric is given by


det gab = −N2e−2b1−2b2−2b3 .







Kasner metric


A pedagogical starting point is the Kasner solution with the following
parametrization:


b1 =
1


4
(w2 − 1)τ, b2 =


1


2
(w + 1)τ, b3 = −1


2
(w − 1)τ,


N = −e−b1−b2−b3 = −e−
1
4 (w


2+3)τ ,


and n1 = n2 = n3 = 0.
We shall use a linear combination of all three KVFs


a1∂x + a2∂y + a3∂z .


as the KVF in Geroch’s transformation, so that the transformation
generates the most general metric possible from the given seed.







Change of coordinates


To simplify the KVF before applying Geroch’s transformation, make the
coordinate change


x = X + n10Y + n20Z , y = Y + n30Z , z = Z


where n10, n20, n30 are constants. Then the metric parameters b1, b2, b3
and N are unchanged but n1 = n10, n2 = n20, n3 = n30 are now constants
instead of zero. The KVF becomes


(a3(n10n30 − n20)− a2n10 + a1)∂X + (a2 − a3n30)∂Y + a3∂Z .


We cannot set the Z component to zero, but we can set the X and Y
components to zero, leading to


n30 =
a2
a3
, n10 =


a1
a3
.


Without loss of generality, we set a3 = 1, and so n30 = a2 and n10 = a1.
n20 remains free. We will see later that it can be used to eliminate any
y -dependence.







Change of coordinates


To make transparent the effect of Geroch’s transformation on the b’s, it
is best to adapt the KVF to ∂x . So we make another coordinate change
to swap X and Z :


X = z̃ , Y = ỹ , Z = x̃ ,


which in effect introduces frame rotations to the Kasner solution. The
Kasner solution now has


N = −e−
1
4 (w


2+3)τ


e−2b1 = e(w−1)τ + n220e−
1
2 (w


2−1)τ + n230e−(w+1)τ


e−2b2 =
A2


e−2b1


e−2b3 = e−
1
2 (w


2+3)τA−2


n1 =
n30e−(w−1)τ + n10n20e−


1
2 (w


2−1)τ


e−2b1


n2 =
n20e−


1
2 (w


2−1)τ


e−2b1


n3 = e−
1
2 (w


2−1)τA−2
[
n30(n10n30 − n20)e−(w+1)τ + n10e(w−1)τ


]
,







Change of coordinates


where


A2 = (n10n30 − n20)2e−
1
2 (w+1)2τ + n210e−


1
2 (w−1)2τ + e−2τ .


Effectively, we are applying Geroch’s transformation to the seed solution
above, using the KVF ∂x̃ . We shall now drop the tilde from the
coordinates.







Applying Geroch’s transformation


Applying Geroch’s transformation using a KVF ξ involves the following
steps. First compute


λ = ξaξa


and integrate the equation


∇aω = εabcdξ
b∇cξd


for the general solution for ω. ω is determined up to an additive constant
ω0. In our case we get


λ = e−2b1 = e(w−1)τ+e−
1
2 (w


2−1)τn220+e−(w+1)τn230, ω = 2wn30z−Ky+ω0,


where the constant K is given by


K =
1


2
(w − 1)(w + 3)n20 − 2wn10n30.


We could absorb ω0 by a translation in the z direction if wn30 6= 0, but
we shall keep ω0 for the case wn30 = 0.







Applying Geroch’s transformation


The next step involves finding a particular solution for αa and βa:


∇[aαb] =
1


2
εabcd∇cξd , ξaαa = ω,


∇[aβb] = 2λ∇aξb + ωεabcd∇cξd , ξaβa = ω2 + λ2 − 1.


Without loss of generality, we choose θ = π
2 in Geroch’s transformation,


so αa is not needed in ηa below. We assume that βa has zero
τ -component. Its other components are


β1 = ω2 + λ2 − 1


β2 = n10n
3
20e−(w2−1)τ +


[
2
w − 1


w + 1
n10n20n


2
30 +


4


w + 1
n220n30


]
e−


1
2 (w+1)2τ


+ 2
w + 1


w − 1
n10n20e−


1
2 (w−1)2τ + (w + 1)n30e−2τ + n330e−2(w+1)τ + F2(y , z)


β3 = n320e−(w2−1)τ + 2n20n
2
30


w − 1


w + 1
e−


1
2 (w+1)2τ + 2n20


w + 1


w − 1
e−


1
2 (w−1)2τ + F3(y , z)


where F2(y , z) and F3(y , z) satisfy the constraint equation


−∂zF2 + ∂yF3 + 2(w − 1)ω = 0.







Applying Geroch’s transformation


For our purpose, we want F3 to be as simple as possible, so we choose


F3 = 0, F2 =


∫
2(w−1)ωdz = 2w(w−1)n30z


2−2(w−1)Kyz+2(w−1)ω0z .


The last step constructs the new metric. Define λ̃ and ηa as


λ


λ̃
= (cos θ − ω sin θ)2 + λ2 sin2 θ,


ηa = λ̃−1ξa + 2αa cos θ sin θ − βa sin2 θ.


The new metric is given by


g̃ab =
λ


λ̃
(gab − λ−1ξaξb) + λ̃ηaηb.


In our case g̃ab is given by the metric parameters


Ñ2 = N2(ω2 + λ2)


e−2b̃1 =
e−2b1


ω2 + λ2


e−2b̃2 = e−2b2(ω2 + λ2)


e−2b̃3 = e−2b3(ω2 + λ2)







Applying Geroch’s transformation


ñ1 = −2w(w − 1)n30z
2 + 2(w − 1)Kyz − 2(w − 1)ω0z


+
ω2


λ
(n30e−(w+1)τ + n10n20e−


1
2 (w


2−1)τ )


−
[
n30we−2τ +


w + 3


w − 1
n10n20e−


1
2 (w−1)2τ


+
w − 3


w + 1
n20n30(n10n30 − n20)e−


1
2 (w+1)2τ


]
ñ2 = n20e−


1
2 (w


2−1)τ


[
−w + 3


w − 1
e(w−1)τ − n230


w − 3


w + 1
e−(w+1)τ +


ω2


λ


]
ñ3 = A−2


[
n10e−


1
2 (w−1)2τ + n30(n10n30 − n20)e−


1
2 (w+1)2τ


]
,


and A is the area density of the G2 orbits.







The new metric


The new solution admits two commuting KVFs:


∂x , [−(w − 1)K 2y2 + 2(w − 1)Kω0y ]∂x + 2wn30∂y + K∂z .


Their G2 action is non-OT, unless n10 = n20 = 0. The solution is also the
first non-OT Abelian G2 explicit solution found.
In the next section we shall focus on the case where K = 0, or
equivalently, where


n20 =
4w


(w − 1)(w + 3)
n10n30,


which turns off the R2 frame transition and eliminates the y -dependence.







Special cases


The mixed frame/curvature transition TN1R1 is described by the metric
g̃ab with n20 = n30 = 0. Both the double frame transition and the mixed
frame/curvature transition are encountered in the exceptional Bianchi
type VI∗−1/9 cosmologies.
Setting n10 = n20 = 0 yields the OT G2 spike solution.







The dynamics of the solution


To describe the dynamics of the non-OT spike solution, we shall plot the
state space orbit projected onto the Hubble-normalized (Σ+,Σ−) plane.


Alternative spike orbits for w = 5. Left panel is the first alternative orbit,
right panel is the second alternative. Spike orbits are in red, faraway
orbits in blue. A red circle marks the start of the orbits, a red star marks
the end.







The dynamics of the solution


The non-OT spike solution (with K = 0, ω0 = 0) goes from a Kasner
state with 2 < w < 3, through a few intermediate Kasner states, and
arrives at the final Kasner state with w < −1. The transitions are
composed of spike transitions and R1 frame transitions. The non-OT
spike solution always resolves its spike, unlike the OT spike solution with
|w | < 1, which has a permanent spike.
For a typical Kasner source with 2 < w < 3, there are six non-OT spike
solutions, some of which are equivalent, that start there. For example,
non-OT spike solutions with |w | = 1


3 , 2, 5 all start at wsource = 7
3 . From


there, however, there are two extreme alternative spike orbits. The first
alternative is to form a “permanent” spike, followed by an R1 transition,
and lastly to resolve the spike. This alternative is more commonly
encountered (assuming that permanent spikes are more commonly
encountered than no-spike at the end of a Kasner era). The second
alternative is to undergo an R1 transition first, followed by a transient
spike transition, and finish with another R1 transition. By varying n10 and
n30, one can get orbits that are close to one extreme alternative or the
other, or some indistinct mix.







Summary


We went through the steps of generating the non-OT G2 spike solution,
and illustrated its state space orbits for the case K = 0, which show two
extreme alternative orbits. More importantly, the non-OT G2 spike
solution always resolves its spikes, in contrast to its OT G2 special case
which produces an unresolved permanent spike for some parameter
values. The non-OT G2 spike solution shows that, in the oscillatory
regime near spacelike singularities, unresolved permanent spikes are
artefacts of restricting oneself to the OT G2 case, and that spikes are
resolved in the more general non-OT G2 case. Therefore spikes are
expected to recur in the oscillatory regime rather than to become
permanent spikes.


For the stiff fluid case, see Coley & Lim 2016.
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