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Outline

CST 101

Continuum Inspired Dynamics for CST : a review of results in 2d CST

The Hartle-Hawking Wave Function in 2d CST

The Large N limit.

L. Glaser and S. Surya, Class.Quant.Grav. (2016)

L. Glaser, D. O’Connor and S. Surya, In Preparation
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CST-101 – L.Bombelli, J.Lee, D. Meyer and R. Sorkin, PRL 1987

Spacetime continuum is replaced by a locally finite countable partially ordered set.

Order + Number ∼ Spacetime geometry

Continuum approximation: via a Poisson Process:

PV (n) ≡ 1
n!

exp−ρV (ρV )n, < N >= ρV

Local Lorentz invariance: there are no preferred directions
– L.Bombelli, J.Henson, R. Sorkin, Mod.Phys.Lett. 2009

Non-locality: A causal set need not be a fixed valency graph.
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A Continuum Inspired Dynamics For CST

First principles: Quantum sequential growth using the quantum measure formulation.

Continuum Inspired Dynamics:

ZΩ =
∑
c∈Ω

exp
i
~ S(c)

S(C) is the Benincasa-Dowker action which is the analog of the Einstein-Hilbert action in CST.
–D. Benincasa and F. Dowker, Phys.Rev.Lett. (2010)

–F. Dowker and L. Glaser, CQG (2013)

Ω is a sample space of causal sets ( e.g.: the set of all past-finite causal sets)
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Analytic Continuation

ZΩ =
∑
c∈Ω

exp
iβ
~ S(c) −→ ZΩ =

∑
c∈Ω

exp−
β
~ S(c)

Space of Configurations Ω is unchanged: There are no Euclidean causal sets!

Analytic continuation of parameter: iβ → −β

MCMC for ΩN :

Covariant/label invariant observables 〈O〉
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β
~ S(c)

Space of Configurations Ω is unchanged: There are no Euclidean causal sets!

Analytic continuation of parameter: iβ → −β

MCMC for ΩN :

β = 0:
In the N →∞ limit the Kleitman-Rothschild posets dominate.

The onset of the asymptotic regime occurs for N > 80
– J. Henson, D. Rideout, R. Sorkin and S.Surya, 2016

Studies have begun on β 6= 0 – a challenge!

Covariant/label invariant observables 〈O〉
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Analytic Continuation

ZΩ =
∑
c∈Ω

exp
iβ
~ S(c) −→ ZΩ =

∑
c∈Ω

exp−
β
~ S(c)

Space of Configurations Ω is unchanged: There are no Euclidean causal sets!

Analytic continuation of parameter: iβ → −β

MCMC for ΩN :

Covariant/label invariant observables 〈O〉

Ordering Fraction: R/
(N

2

)
Myrheim-Myer Dimension

Homology

Height

Abundance of Causal Diamonds of a given volume
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2d CST

Z2d =
∑

c∈Ω2d(N)

exp−
1
~βS2d

–G. Brightwell, J. Henson, S.Surya, Class.Quant.Grav. 25, 2008

–S. Surya, Class.Quant.Grav. 29, 2012

–L. Glaser, D. O’Connor and S. Surya, in preparation

Ω2d(N) ⊂ Ω(N): N-element 2d-orders: U ∩ V , where U and V are total orders:

2d Benincasa-Dowker Action: 1
~S(ε) = 4ε

(
N − 2ε

N−2∑
n=0

Nn f (n, ε)
)
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Z2d =
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exp−
1
~βS2d

–G. Brightwell, J. Henson, S.Surya, Class.Quant.Grav. 25, 2008
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Ω2d(N) ⊂ Ω(N): N-element 2d-orders: U ∩ V , where U and V are total orders:

x ≺ y ⇔ u(x) < u(y) and v(x) < v(y)

u(x) v(x) 

v(z)

v(y)

y

x

z

u(z)

u(y)

u(x) < u(y) < u(z) v(x) < v(z) < v(y)

u v

Includes all continuum-like causal sets ∼ topologically trivial causal diamond in 2d.

Includes posets with no continuum approximation.

2d Benincasa-Dowker Action: 1
~S(ε) = 4ε

(
N − 2ε

N−2∑
n=0

Nn f (n, ε)
)
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Ω2d(N) ⊂ Ω(N): N-element 2d-orders: U ∩ V , where U and V are total orders:

2d Benincasa-Dowker Action: 1
~S(ε) = 4ε

(
N − 2ε

N−2∑
n=0

Nn f (n, ε)
)

Nn: # of n-element order intervals
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Mesoscale: ε =

(
lp
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)2
∈ (0, 1]

f (n, ε) = (1− ε)n − 2εn(1− ε)n−1 + 1
2 ε

2n(n − 1)(1− ε)n−2

ε = 1: 1
~ S(2)(C) = N − 2N0 + 4N1 − 2N2
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The 2d CST Phase Transition –S. Surya, Class.Quant.Grav. 29, 2012

〈S〉 vs β for N = 50, ε = 0.12
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Continuum Phase
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The typical causal set is a 2d “random order”: U and V chosen randomly and independently.

2d random orders dominate when β = 0. –Peter Winkler, Order 1, 317, (1985), El-Zahar and N.W. Sauer, Order 5, 239,

(1988)

2d random order ∼ Minkowski spacetime 2M. –G. Brightwell, J. Henson, S.Surya, Class.Quant.Grav. 25, 2008

Continuum Phase ∼ 2d causal diamond
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Crystalline Phase
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The typical causal set is layered, with a large number of links, but much fewer small intervals.

It is distinctly non-manifold like.

Crystalline Phase 6∼ continuum

Sumati Surya (RRI) Hartle-Hawking July 2016 9 / 17



The Hartle-Hawking Prescription in CST

Continuum Proposal: Ψ0(hab,Σ) = A
∑
M

∫
dg exp−

1
~ IE (g), ∂M = Σ, g|Σ = h

Path integral over Riemannian geometries on M.

M is compact with a “final” boundary geometry (Σ, hab).

Initial spatial “zero” geometry, “a single point, which captures the idea of a universe emerging from
nothing.”’
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The Hartle-Hawking Prescription in CST

Continuum Proposal: Ψ0(hab,Σ) = A
∑
M

∫
dg exp−

1
~ IE (g), ∂M = Σ, g|Σ = h

CST Proposal: Ψ
(N)
0 (Nf , β) ≡ A

∑
c∈ΩN

exp−
1
~βS(c), |Max(C)| = Nf

The sum is over “discrete Lorentzian” geometries or causal sets, c ∈ ΩN of finite cardinality.

Initial spatial geometry is a single element to the past of all other elements in c. This is “a single
point” from which the universe emerges.

The final geometry is a maximal antichain Af whose only characteristic feature is cardinality which is
therefore fixed |Af | = Nf . Nf

N-1-Nf
e0
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The 2d Hartle-Hawking Wave Function: Analytic Results

Ψ
(N)
0 (Nf , β) ≡ A

∑
c∈Ω2d

exp−
1
~βS2d(c), Nf = N − p

Nf

N-1-Nf
e0

• p = 1 : Ψ0(N − 1) = A exp−βR , R = 2εN(1− 2ε) + 4ε2
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The 2d Hartle-Hawking Wave Function: Analytic Results

Ψ
(N)
0 (Nf , β) ≡ A

∑
c∈Ω2d

exp−
1
~βS2d(c), Nf = N − p

• p = 2 : Ψ0(N − 2) = A exp−β(R−Q)

(1−expβQ )2

(
N − 2− (N − 1) expβQ + expβQ(N−1)

)
, Q = 4ε2(1− 3ε).

Sumati Surya (RRI) Hartle-Hawking July 2016 11 / 17



The 2d Hartle-Hawking Wave Function: Analytic Results

Ψ
(N)
0 (Nf , β) ≡ A

∑
c∈Ω2d

exp−
1
~βS2d(c), Nf = N − p

• p = 3 :

antichain

Ψ
(a,i)
0 (N − 3) = A exp−βR

N−3∑
`1=1

N−3∑
`2=1

mf∑
m=m0

(N − 2− `1 − `2 + m) expβPm expβQ(`1+`2)

chain

Ψ
(a,ii)
0 (N − 3) = A exp−βR

(N−3−1)∑
`1=1

(N−3−`1)∑
`2=1

(N−3−`1−`2)∑
m̃=0

(N − 2− `1 − `2 − m̃) expβQ(`1+`2)

P = 24ε4, m0 = max(1, `1 + `2 − N + 3), mf = min(`1, `2)
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The 2d Hartle-Hawking Wave Function: Analytic Results

Ψ
(N)
0 (Nf , β) ≡ A

∑
c∈Ω2d

exp−
1
~βS2d(c), Nf = N − p

• p > 3 : Analytically challenging/impossible!
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Numerical Simulations

Ψ0(Nf ) = AZβ(Nf ) = AZ0(Nf ) exp
(
−
∫ β

0
dβ′〈Sβ′ (Nf )〉

)

Calculation of 〈Sβ(Nf )〉 using MCMC methods.

Numerical Integration:
∫ β

0 dβ′〈Sβ′ (Nf )〉

Estimation of Z0(Nf ).

Normalise to get A.

Calculations performed for N = 50, ε = 0.12, 0.5, 1.

Sumati Surya (RRI) Hartle-Hawking July 2016 12 / 17



Numerical Simulations

Ψ0(Nf ) = AZβ(Nf ) = AZ0(Nf ) exp
(
−
∫ β

0
dβ′〈Sβ′ (Nf )〉

)
Calculation of 〈Sβ(Nf )〉 using MCMC methods.

1 2 3 4 5
Β

-20

-15

-10

-5

0

5

10
<S>

N f

1 5 10 15 20 25 30 35 40 45
- 6- 4- 202

46

Phase transition for smallerNf .

As Nf increases to N − 1, the phase transition is wiped out

Minimum value of βc atNf ∼ 30 : βc(Nf ) is not a monotonic function.

Numerical Integration:
∫ β

0 dβ′〈Sβ′ (Nf )〉

Estimation of Z0(Nf ).

Normalise to get A.

Calculations performed for N = 50, ε = 0.12, 0.5, 1.
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The Hartle-Hawking Wave Function.
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The Two Peaks

The Peak at Nf ∼ 4
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The Two Peaks

The Peak at Nf ∼ 23
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Features of the second peak geometry

Rapid expansion from a single element to a large spatial slice: Nf /height ∼ 6.

Homogeneity determined from causal past.

Size of past
14 15 16 18 19 20 21 22 23 24 25 26 27 28

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Probability

5 10 15 20
Final Element

24.0

24.5

25.0

25.5

26.0

26.5

Average Size of Past

Causal pasts of final elements maximally overlap

Non-manifold like.

Initial Conditions for the Universe from Quantum Gravity?
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Large N behaviour L.Glaser, D.O’Connor, S. Surya, in preparation

Nature of phase transition: First order for ε = 0.02−−0.5.
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Action is non-extensive, but there is a scaling: β〈S〉/N2.

Thermodynamic Limit Exists
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Summary and Open Questions and Speculations

A concrete illustration of how physically interesting initial conditions can arise from a theory of
quantum gravity.

Importance of non-continuum structures.

2d is NOT 4d, but there are universal dimension-independent features:
β parameter: In d > 2 rescales the Planck volume.

Large β limit is dominated by the Action⇒ Crystalline Phase will dominate.

Speculations:

Simulations on RRI HPC cluster. Supported in part by FQXi via Theiss Research
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Summary and Open Questions and Speculations

A concrete illustration of how physically interesting initial conditions can arise from a theory of
quantum gravity.

Importance of non-continuum structures.

2d is NOT 4d, but there are universal dimension-independent features:
β parameter: In d > 2 rescales the Planck volume.

Large β limit is dominated by the Action⇒ Crystalline Phase will dominate.

Speculations: N ∼ Age of Universe. ε could flow to smaller values for which spacetime emerges.

Simulations on RRI HPC cluster. Supported in part by FQXi via Theiss Research
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