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• Mass and angular momentum can be extracted from a black hole with ergoregion.

E.g., Penrose process

• Area law not violated since                                           and particles extract angular 
momentum as well.

Introduction to superradiant instability
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• Similar process amplifies waves: superradiance

Introduction to superradiant instability
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• Can be understood from the area theorem:

• Wave                          changes BH area by

• Thus, if                           , area increase requires
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Introduction to superradiant instability

• Superradiant instability caused 
when ergoregion combined with 
reflecting boundary.

• Examples:
    mass term for field
    mirror
    anti-de Sitter boundary

• Black hole must be sufficiently 
small, or else no ergoregion 
(e.g., Hawking-Reall bound)
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Linear superradiant instability

• Background metric        

• asymptotically AdS black hole solution to Einstein equation in

• horizon Killing vector field

• Metric perturbation       

• solution to linearized Einstein equation with reflecting AdS boundary 
condition

• Main result: Black hole is linearly unstable if        becomes spacelike 
somewhere outside the black hole (i.e., there is an ergoregion).
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Canonical energy method

• Standard method to prove instability: Search for mode solutions that grow in 
time.

• This is difficult, in particular for complicated backgrounds, higher dimensions, 
or gravitational perturbations. Requires decoupling and separation of 
equations, which may not even be possible.

• Alternative is “canonical energy method”, which only requires construction of 
initial data solving the constraint equations---not a solution to the evolution 
equations.



Canonical energy method

• Canonical energy     is an integral over a Cauchy hypersurface     , quadratic in the 
perturbation       , satisfying

• Gauge invariance

• Degeneracy precisely on perturbations to
other stationary black holes

• Conservation

• Positive flux at horizon and
infinity

• Then                    , and if a solution to the constraints        exists such that        
                   , instability follows.   
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Construction of canonical energy

• Starting with Einstein-Hilbert action, derive symplectic current, which 
depends on two metric perturbations,

• For solutions to the linearized Einstein equation,

wa(�1, �2) =
1

16⇡
gabcdef (�2bcrd�1ef � �1bcrd�2ef ) ,

raw
a = 0



Positivity of fluxes

• Integrate over a volume V. On solutions, Stokes’ theorem gives

• Now take                   , so    
and consider contributions from each boundary

(imposed reflecting AdS boundary, and certain gauge conditions)
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Positivity of fluxes
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Canonical energy

• So define the canonical energy

• Above implies                                             (decreases in time)

• Under restriction to certain gauge conditions at         and     , together with
              and                 for all asymptotic symmetries      , it can be shown that              
              is gauge-invariant and degenerate precisely on perturbations to other 
stationary black holes.
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Construction of initial data

• Energy (with respect to      ) of a particle with 4-momentum      is

If there is an ergoregion where                   is spacelike, then a timelike or null 
may be chosen to make                        in the ergoregion.

• Similarly, for a wave, we ought to be able to find a gravitational perturbation 
such that the canonical energy 

• Step 1: WKB method to obtain approximate compact support solution to 
the constraint equations of the form                               with 
and

• Step 2: Obtain exact solution with Corvino-Schoen method, such that 
canonical energy remains negative.
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Construction of initial data

• Trade spacetime quantities for initial data quantities defined on 

gab

�ab

⌃

qab = gab + nanb

pab =
p
q(kab � qabkcc)

�qab = q c
a q d

b �cd

�pab =
p
q(qacqbd � qabqcd)

1

2
£n�cd

I
H +

⌃

na



Construction of initial data

• Assume there is a region where       is spacelike. Construct approximate initial 
data of compact support in this region.

• Trick: In this region, choose      such that it
is tangent to       (possible since spacelike).
This leads to the expression

• Constraints

Ka
⌃ ⌃

Ergoregion
Ka

Ka

EK(�qab, �p
ab) = � 1

16⇡

Z

⌃
Ka

�
�2�pbcDa�qbc + 4�pcbDb�qac + 2�qacDb�p

cb

�2pcb�qadDb�q
d

c + pcb�qadD
d�qcb

�

C(�qab, �p
ab) ⌘

0

BBBBB@

q
1
2

�
DaDa�q c

c �DaDb�qab +Ric(q)ab�qab
�
+

q�
1
2

�
��q c

c pabpab + 2pab�pab + 2pacpba�qbc+
1

d�2p
c
cp

d
d�q

a
a � 2

d�2p
a
a�p

b
b � 2

d�2�qabp
abp c

c

⌘

�2q
1
2Db(q�

1
2 �pab) +Da�qcbpcb � 2Dc�qabpbc

1

CCCCCA
= 0

U



Construction of initial data

• WKB expansion of initial data

• Constraints become

• 0th order, choose

• Higher orders algebraic
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Construction of initial data

• To leading order in WKB, the canonical energy is

• So choosing                    gives            as  

• Of course, any given WKB order is only an approximate solution. Using the 
Corvino-Shoen method (see paper), we can correct our WKB initial data such 
that

• Linearized constraints hold exactly

• Data remain smooth and compactly supported in slightly larger region

• The correction to the canonical energy is sufficiently small as 
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Conclusions and open questions

• Any black hole in AdS with a horizon Killing field that becomes spacelike is 
linearly unstable to superradiant gravitational perturbations. Results follow from 
a Lagrangian formulation of the theory, so should carry over to other fields.

• As perturbation grows, nonlinear effects become important:

• Backreaction of the perturbation on the black hole changes the background.

• Changing background alters the dynamics of the perturbation. Unstable 
modes may become stable and fall back into the black hole. [See Bosch, 
Green and Lehner (2016) for nonlinear results in the charged analog.]

• End point of instability remains unknown. No plausible final state, and 
numerical simulations are challenging.


