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Introduction

I Several results in quantum gravity suggest dimensional
reduction to 2 in the UV1

I One way to obtain this is via a Planck-scale modified
dispersion relation E = k2 + σ4k6 considering the notion of
spectral dimension2

I Planck-scale deformed dispersion relation widely studied in
quantum gravity and cosmology literature3

I We will study the interaction of the dispersion relation
E = k2 + σ4k6 with the inflationary scenario and the effect
for the description of the CMB spectrum

1Atick and Witten, Nucl. Phys B310 (1988), Ambjorn et al., Phys. Rev.
Lett. (5 (2005); Lauscher and Reuter, JHEP 10 (2005); Phys. Rev Lett. 92
(2004), Benedetti, Phys. Rev. Lett 102 (2009)

2Horava, Phys. Rev. Lett 102 (2009); Visser et al., Phys. Rev D84 (2011)
3Amelino-Camelia et al, Nature 393 (1998); Martin and

Brandemberger,Phys. Rev. D63 (2001)



Introduction

I Several results in quantum gravity suggest dimensional
reduction to 2 in the UV1

I One way to obtain this is via a Planck-scale modified
dispersion relation E = k2 + σ4k6 considering the notion of
spectral dimension2

I Planck-scale deformed dispersion relation widely studied in
quantum gravity and cosmology literature3

I We will study the interaction of the dispersion relation
E = k2 + σ4k6 with the inflationary scenario and the effect
for the description of the CMB spectrum

1Atick and Witten, Nucl. Phys B310 (1988), Ambjorn et al., Phys. Rev.
Lett. (5 (2005); Lauscher and Reuter, JHEP 10 (2005); Phys. Rev Lett. 92
(2004), Benedetti, Phys. Rev. Lett 102 (2009)

2Horava, Phys. Rev. Lett 102 (2009); Visser et al., Phys. Rev D84 (2011)
3Amelino-Camelia et al, Nature 393 (1998); Martin and

Brandemberger,Phys. Rev. D63 (2001)



Introduction

I Several results in quantum gravity suggest dimensional
reduction to 2 in the UV1

I One way to obtain this is via a Planck-scale modified
dispersion relation E = k2 + σ4k6 considering the notion of
spectral dimension2

I Planck-scale deformed dispersion relation widely studied in
quantum gravity and cosmology literature3

I We will study the interaction of the dispersion relation
E = k2 + σ4k6 with the inflationary scenario and the effect
for the description of the CMB spectrum

1Atick and Witten, Nucl. Phys B310 (1988), Ambjorn et al., Phys. Rev.
Lett. (5 (2005); Lauscher and Reuter, JHEP 10 (2005); Phys. Rev Lett. 92
(2004), Benedetti, Phys. Rev. Lett 102 (2009)

2Horava, Phys. Rev. Lett 102 (2009); Visser et al., Phys. Rev D84 (2011)
3Amelino-Camelia et al, Nature 393 (1998); Martin and

Brandemberger,Phys. Rev. D63 (2001)



Introduction

I Several results in quantum gravity suggest dimensional
reduction to 2 in the UV1

I One way to obtain this is via a Planck-scale modified
dispersion relation E = k2 + σ4k6 considering the notion of
spectral dimension2

I Planck-scale deformed dispersion relation widely studied in
quantum gravity and cosmology literature3

I We will study the interaction of the dispersion relation
E = k2 + σ4k6 with the inflationary scenario and the effect
for the description of the CMB spectrum

1Atick and Witten, Nucl. Phys B310 (1988), Ambjorn et al., Phys. Rev.
Lett. (5 (2005); Lauscher and Reuter, JHEP 10 (2005); Phys. Rev Lett. 92
(2004), Benedetti, Phys. Rev. Lett 102 (2009)

2Horava, Phys. Rev. Lett 102 (2009); Visser et al., Phys. Rev D84 (2011)
3Amelino-Camelia et al, Nature 393 (1998); Martin and

Brandemberger,Phys. Rev. D63 (2001)



Mukhanov-Sasaki equation with modified dispersion
relation

The modified Mukhanov-Sasaki equation is

v ′′k +

(
k2 +

σ4k6

a4

)
vk −

z ′′

z
vk = 0 , (1)

where, as in the standard case, v encodes the scalar perturbation,

a is the scale factor of the background metric and z =
a
√
ρ
√
1+w

H .

As usual in cosmology, the solution to (1) has been found finding
the solutions in the two regimes ”inside the horizon”(
k2 + σ4k6

a4

)
� z ′′

z and ”outside the horizon”
(
k2 + σ4k6

a4

)
� z ′′

z

and then matching them.
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Scale invariance from modified dispersion relation
The calculation goes as in standard cosmology.

Interestingly for short wavelenght such that one can neglect k2

compared to σ4k6

a4
, the spectrum for scalar perturbations is

∆(k) =
k3

2π2
|v
z
|2 =

~
4π2σ2

· a
2

z2
, (2)

which is scale invariant already inside the horizon4! In fact

vin =
√

~
2ωk

e−i
∫
dτωk , where ωk = σ2k3

a2
.

Moreover 5

I It is possible to obtain deviation from exact scale invariance
using k6−δ instead of k6 or slow transient to kγ(k).

I It is possible to obtain tensor to scalar ratio r postulating
different σ for scalar and tensor modes and one finds r = (σsσt )2

4Magueijo, Class. Quant. Grav. 25 (2008)
5Amelino-Camelia et al, Phys. Rev. D88 (2013)
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Necessary conditions to reproduce the CMB spectrum

For E = k2 + σ4k6 to be the key ingredient to describe the CMB it
is needed that6

1. the short wavelenght modes should be streched to
cosmological scales.

2. the short wavelenght modes must exit the horizon before k2

becomes comparable to σ4k6/a4:

σ4k6

a4
=

z ′′

z
� k2 . (3)

We find that inflationary expansion can realize these conditions.

6Bianco, Friedhoff and Wilson-Ewing, in preparation
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Inflation and modified dispersion relation

For a constant equation of state w < −1/3, the scale factor
behaves as

a(τ) = ao (−τ)
2

1+3w , (4)

where −∞ < τ < 0 for an expanding universe.

The modified Mukhanov-Sasaki equation becomes

v ′′k +

(
k2 +

σ4k6

a4o |τ |8/(1+3w)

)
vk −

2(1− 3w)

(1 + 3w)2τ2
vk = 0 . (5)



Inflation and modified dispersion relation

Imposing
σ4k6

a4
=

z ′′

z
� k2 , (6)

we find

H �
√

2

1− 3w
σ−1 . (7)

The amplitude of the scalar perturbations fixes σ ∼ 104
√
G~, so

that we estimate H � 10−4/
√
G~.



Slow-roll inflation and modified dispersion relation

The two slow-roll parameters are

ε = − Ḣ

H2
, η = 2ε− ε̇

2Hε
, (8)

which satisfy the conditions 0 < ε� 1 and |η| � 1.
Near the horizon, for a short period of time both H and ε are nearly
constant and the scale factor is given to a good approximation by

a(τ) = |Hτ |−(1+ε) . (9)

Then the modified Mukhanov-Sasaki equation takes the form

v ′′k +

(
k2 +

σnkn+2

an

)
vk −

2 + 9ε− 3η

τ2
vk = 0 , (10)

where we allowed for a more generic dispersion relation.



Slow-roll inflation and modified dispersion relation
The spectral indeces for scalar and tensor modes are

ns − 1 = −6ε+ 2η +
3nε

2 + n
(11)

and

nt = −2ε+
3nε

n + 2
. (12)

And the tensor to scalar ratio is

r =
∆t(k)

∆s(k)
= 16 ε

(
σs
σt

) 3n
n+2

. (13)

Remarks:
I a red tilt in the spectrum can be obtained for all different

values of n

I the amplitude of the perturbations is given by a combination
of σ, ε and H.

I possible observational test from modified consistency relation
r = −8nt

1− 3n
2n+4

(for the case σs = σt).
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Conclusions

I Planck-scale modified dispersion relation related to
quantum-gravity dimensional reduction can provide a
description for the CMB in presence of an expansionary phase
that stretches the short wavelenght modes.

I if given by inflation, this expansion phase should be
characterized by H � 104

√
G~.

I if the expansionary phase is given by slow-roll inflation, one
obtains new relations between observables that can provide
observational tests
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