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The Method in a Nutshell

[G0]∞ [K(G0)]∞ [K2(G0)]∞ [. . .]∞ [Kn(G0)]∞

G0
K //

φλ→0

OO

K(G0)
K //

φλ→0

OO

K2(G0)
K //

φλ→0

OO

· · · K //

φλ→0

OO

Kn(G0)

φλ→0

OO

1 S: the superspace of all non-compact, locally compact metric spaces ⊃
uncolored graphs (colored, in future works).

2 An initial state, (G0, d0) ∈ S, fundamental layer of spacetime.
3 Geometric renormalization process consists of:

1 Coarse graining K : (Gi , di )→ (Gi+1, di+1) where Ki (G0) = Gi

2 A rescaling map φλ : (Gi , di ) 7−→ (Gi , λdi ) on each member
limλ→0 φλ ((Gi , di )) = (Gi,∞, di,∞). Where (Gi,∞, di,∞) the continuum limit
of (Gi , di ) and [Ki (G0)]∞ = Gi,∞.

4 Lower chain: coarse graining chain discrete spaces. Upper chain: the
continuum limit chain.
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limλ→0 φλ ((Gi , di )) = (Gi,∞, di,∞). Where (Gi,∞, di,∞) the continuum limit
of (Gi , di ) and [Ki (G0)]∞ = Gi,∞.

4 Lower chain: coarse graining chain discrete spaces. Upper chain: the
continuum limit chain.

K is applied consecutively until
land in the basin of attraction of a continuum limit (i.e. spaces in S with the
same continuum limit). Similar-structure discrete spaces.

end in a fixed point, a set of accumulation points or converge under K
(non-generic senario).
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Coarse Graining K
Motivation: Wilsonian renormalization, block spin (Ising, etc.).

Generalization: Quasi-isomery...
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Coarse Graining K
Motivation: Wilsonian renormalization, block spin (Ising, etc.).
Generalization: Quasi-isomery...

Given metric spaces X ,Y ∈ S, a map f : X → Y , where ∃λ ≥ 1, ε ≥ 0 such that
∀x1, x2 ∈ X

1
λ
dX (x1, x2)− ε ≤ dY (f (x1), f (x2)) ≤ λdX (x1, x2) + ε, ∀x1, x2 ∈ X

and
∀y ∈ Y : ∃x ∈ X : dY (y , f (x)) ≤ C .

is a quasi-isometry, i.e.
distance of the images under f , within a factor λ, and up to a constant, of
their original distances, and
every point y ∈ Y lies within a constant distance C ≥ 0 of an image point.
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and
∀y ∈ Y : ∃x ∈ X : dY (y , f (x)) ≤ C .

is a quasi-isometry, i.e.
distance of the images under f , within a factor λ, and up to a constant, of
their original distances, and
every point y ∈ Y lies within a constant distance C ≥ 0 of an image point.

It is a rough isometry when λ = 1.
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Examples of K
k-local insertion/deletion of edges: the k-neighborhood of vertices of a graph G
such that the k-neighborhood remains invariant. Pure quasi-isometry.

Saeed Rastgoo (UAM-I, Mexico) Spacetime emergence via a geometric RG GR21, N.Y., Jul. 14, 2016 4 / 11



Examples of K
k-local insertion/deletion of edges: the k-neighborhood of vertices of a graph G
such that the k-neighborhood remains invariant. Pure quasi-isometry.

G −→ C(G ) “clique graph”:
Vertices V (C(G )): maximal subsimplexes (cliques) of G ,
An edge between two of vertices of C(G ) if cliques have non-zero vertex
overlap (in G ).

Rough isometry.
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A Measure of Similarity (and Convergence): dGH
Gromov-Hausdorff distance dGH (X ,Y ) between two compact metric spaces (can
be extended to S):

Measures how far two metric spaces∈ S are from being isometric,
I X ,Y are isometric iff dGH(X ,Y ) = 0, non-isometric iff dGH(X ,Y ) =∞.

Defines a notion of convergence for sequences of metric spaces.
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Defines a notion of convergence for sequences of metric spaces.

For X K−→ Y : if
K is pure quasi-isometry, then dGH (X ,Y ) =∞. Spaces are structurally
different.

K is rough isometry, then dGH (X ,Y ) = finite. Spaces are, to some extent,
structurally similar.
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Rescaling φλ and Continuum Limit Properties
The rescaling map, φλ, on a metric space (X , dX )

φλ : (X , dX ) 7−→ (X , λdX )

λ parametrizes the distance between the points on the different length scales.
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Rescaling φλ and Continuum Limit Properties
The rescaling map, φλ, on a metric space (X , dX )

φλ : (X , dX ) 7−→ (X , λdX )

λ parametrizes the distance between the points on the different length scales.

limλ→∞ φλ reveals the fine structure of X by magnifying the infinitesimal
neighborhoods of the points of X ,
limλ→0 φλ corresponds to the large scale structure of X :

lim
λ→∞

φλ ((X , dX )) = lim
λ→∞

(X , λdX ) = (X∞, dX ,∞) ,

important for us.
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Some Properties of the Continuum Limit
If spaces are purely quasi-isometric, i.e. dGH (X ,Y ) =∞, then

dGH(X∞,Y∞) =∞,

i.e. they also have different continuum limits.
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∣∣∣∣dGH (X ′,X ) <∞
}

is the basin of attraction, for the attractor

(X∞, dX ,∞), under the evolution map φλ. They all have the same unique
continuum limit (X∞, dX ,∞).

(X∞, dX ,∞) is scale invariant under φλ i.e. dGH(X∞, λX∞) = 0.
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The Full Picture
Combination of two operations

[G0]∞ [K(G0)]∞ [K2(G0)]∞ [. . .]∞ [Kn(G0)]∞
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K2(G0)
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· · · K //

φλ→0

OO
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with Gi = Ki (G0), etc.
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with Gi = Ki (G0), etc.

On suitable initial conditions, initially K generically is pure quasi-isometry:

I for two consecutive members, dGH (Gi ,Gi+1) =∞. They are structurally
different,

I their continuum limits also different (non-isometric) dGH (Gi,∞,Gi+1,∞) =∞,
and carry different metrics.

However, they are homeomorphic; can even be chosen to be the same
topological space.
Implies that different levels of spacetime will have different metric even if
they are the same set.
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The Full Picture
Combination of two operations

[G0]∞ [K(G0)]∞ [K2(G0)]∞ [. . .]∞ [Kn(G0)]∞

G0
K //

φλ→0

OO

K(G0)
K //

φλ→0

OO

K2(G0)
K //

φλ→0

OO

· · · K //

φλ→0

OO

Kn(G0)

φλ→0

OO

with Gi = Ki (G0), etc.

Coarse graining goes on until either:
1 K turns into (phase transition to) a rough isometry (due to the change of

structure of graphs),

1 continuum limits of these roughly isometric spaces are the same,
dGH(Gi,∞,Gi+1,∞) = 0. They are isometric.

2 These roughly isometric spaces are in the basin of attraction for the
corresponding continuum limit (optimally the classical space-time).

2 coarse graining chain reaches a stable fixed point/set of accumulation points

1 if the spaces are uniformly compact, the Gromov’s compactness theorem
shows they convergence with respect to dGH . Not generic.
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Brief Comments on Dimension
For graphs with polynomial growth, dimension

D(G ) = lim
r→∞

log β(G , vi , r)
log r

coincides with usual dim for embedded spaces and lattices.
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For graphs with polynomial growth, dimension

D(G ) = lim
r→∞

log β(G , vi , r)
log r

coincides with usual dim for embedded spaces and lattices.

Graphs with locally finite vertex degree, being connected, and vertex
transitive: integer dimension.

D stable under quasi-isometry K.
If we want the change of D under renormalization: not quasi-isometric K but
translocal.
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Summary
A geometric RG: using notions of isometric coarse graining, and rescaling.
Coarse graining goes on until a phase transition occurs, quasi −→ rough
isometry.
Quasi-isometric spaces are structurally different, have different continuum
limits.
Rough isometric spaces are structurally similar, have the same unique
continuum limit.
Dimension stable under k-local RG.
Change of dimension under RG with translocal operations.
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Rescaling φλ and continuum limit properties

Take lattice Zn embedded in Rn, take the scaling limit

φl : (Zn, dZn) 7−→ (Zn, λdZn) , λ = 2−l

with dZn a suitable metric on Zn. Then

lim
λ→0

(Zn, λdZn) = Rn,

in pointed GH-sense. For a fixed ball around x = 0, and for l →∞ the ball is
more and more filled with points stemming from lattices having edge length 2−l .
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