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Robinson-Trautman and Kundt class

How to define the RT & K class?

generated by a vector neld k-

twist shear expansion

RT & K class < geometries admitting non-twisting and shear-free null geodesic congruence
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Robinson-Trautman and Kundt class

How to describe the RT & K geometry?

@ u = const — uniquely labels null hypersurfaces
@ k = O, — generator of non-twisting null congruence
@ r— affine parameter along non-twisting null congruence

@ u = const & r = const: (D — 2)-dim transverse space
with metric gpq

(r, u, ") < adapted coordinates and metric:

ds® = 8pg(ryu, x) dXPdx? + 2g,,(r, u, x) A’ du — 2 dudr + guu(r, u, x) di?

Shear-free condition: o® =0« gy = p*(r,u,x) hpg(u,x) with 25 =0

RT subclass < O # 0 Kundt subclass < O = 0




Robinson-Trautman and Kundt class

Why are the Kundt spacetimes interesting?

ds? = hpg dxPdxd + 2e, dPdu — 2dudr + c du? |

© VSI spacetimes: scalar curvature invariants of all orders vanish => gy (1, x) = 84

ds? = 8pg dxPdx? + 2(ep + 1fy) d’du — 2dudr + (ar® + br + ¢) du? (Coley et al., 2006)

@ direct product spacetimes: Bertotti—-Robinson, Nariai, Plebanski-Hacyan backgrounds

ds? = = hpq dxPdx? — 2dudr + ar? du? (see Chap. 7 in Griffiths and Podolsky, 2012)

O TS M (xS

@ gyratons: toy models for null particles with spin @onnor, 1970, Frolov et al., 2005)

source




Robinson-Trautman and Kundt class

Why are the RT spacetimes interesting?

Four dimensions: D = 4
@ Schwarzschild—(anti-)de Sitter black holes

ds? = r2(d0? + sin? 9dg?) — 2dudr — (1 2 — 47 d? ‘

@ C-metric: accelerated black holes

@ expanding gravitational waves: counterpart to non-expanding Kundt waves

O & B

@ alternative spherically symmetric BH in the Einstein—Weyl theory (Lii etal., 2015)

Higher dimensions: D > 4 CecOttzeeiocta 2000

Q@ generalisation of Schwarzschild-like black holes




Algebraic structure of the Weyl tensor

What is the natural reference frame?

@ k, I: future null vectors: k-1 = —1

@ m;: D — 2 spatial vectors: m; - m; = 0;; l k=0,

Lorentz transformations < freedom in {k,l,m;}

@ null rotation with k fixed

@ null rotation with 1 fixed

@ boost in the k — I plane

@ spatial rotation in the space of m;

Natural frame in the RT & K class:

k= (9, = %guuar—i-au mi:n'[?(gupar"‘ap)




ructure of the Weyl tensor

How to efficiently express the Weyl tensor?

bw. +2: \Ifoij = Caped K m,b k¢ m;i ~ Qij

bw., +: Wi = Caped KUK m ~ it = Capea kK m m§ m

bw, 0. WUas=Capug KLk~ Uit = Capea Ml m; mig mf}
Ui = Capea K U mimi  ~ @) Uyrii = Capea K mi ' mf)

bw. -1t sy = Capea K" I ~ "I/j/ Wik = Capea I' mi mj i

b.w. -2t \I/4ij = Cabcd la mf) lC m]d ~ Q:[

Irreducible components (in D > 4):

Py = Wy — 5 (650 ke — 0a ) ~ e

— )
\1127‘('7') = \Ilzr("j) - lﬁ‘sfj\yﬂ ~ (I)ij

b = 2 U U U F ) 2GSl b

Ortaggio et al. (2013)




Algebraic structure of the Weyl tensor

What is the classification scheme?

type vanishing components
G no null frame exists in which all components W; vanish (only in D > 4)
I Wi
1I(a) Wi \Iflri
I(b) Wi Wik
II Woi Wy Ui
II(a) \I/Oij \Ilei \ylijk \yzs
H(b) Wi Ui ‘gliﬂ‘ \I’zr(if)
H(C) \Iloij \IflTi \Iflfjk \Ifzijkl
H(d) | Oy Uy Ty Wy
111 Wi Wi Wi Wos Wy Yokt Wi
Ml(a) | Yoy Uyp \Plijk Wog \;/2T(;j) \I~/2ijk1 Wi \P3Ti
M) | Yoo Vg Vi  Wos Yory Yoiu Yoy Wi
N Wi Uip U Wyg \Il Wi Woii Wagi Wi

Ortaggio et al. (2013)



Algebraic structure of the Weyl tensor

What is the explicit form of the Weyl scalars?

Uip = mf D%ng ‘i’v‘ﬂc =0

Uy =23 p Uyry = mim! 515 (Qog — 55 804 Q)
Wy = mfm] Fpq Ui = ;' mf migm] SCmp,,q

Uspi = m] 37:3 Vp ‘i’w = m}mj'm{ (Xpmq - ﬁ gp[qu])

Wyi = mim! (Wpy — 555 8pgW)

where o=¢g¢" quq X, = g mXpmq W=g" quq
and

— 1 _ 1 _ 1
® g = 8u(pllg) — 28pqu Epg = uip.q) + 38pa,u Joa = 8u(p.rilg) + 38up,r&ua,r
e || stands for the covariant derivative w.r.t. transverse metric gy,

S SR and SR: the Wevl ten Riccikten nd Ricci

No, P, Opg> Fpgs Vs Xpmg Wpq
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structure of the

What is the explicit form of characteristic functions?

s

P= (ig.m,, = @g...,)Y 4E m = i e 3 == (g’"gm,” + 8" 8| |~)

=== iy, = 39, = O, — O 2=t gy, + (2=

722 €8 |1)

0y = R+ (0 = D1 +808).,,) — (@0 = ez)gu»gw =2,,9.) = ©(80l1) T 208).)]

Fog = 8,050,

—

= &8, T 208, — Eufpg])

v, =1 [igwgup,,, = By + Sy = 58" 8, 8y & 8, By — 8up (gw,n = ig’"“gm,,gw,.)]+§gupgw®,' + 8,0, + 18u©
o [Ee st + L8~ 8 2 (S ) ) — (&y.[,,,unnl F ] 1) = 380 (8 + 8on)]

7@[ 3 8uSupyr = Sup F Supyu = 878,181, T & Ewp = SupSuyr

Bl — 38 8] T 3808 g ig’"g,.,,u)]
Kot = &yl la] T Eulanl o T Br8ln€luse T Bl ™ EulaSulusrllp ™ Erulo, el )] T 3EuluBuluy
+O (36, ] o+ Sl s + EluSalal [ ol [l ~ Hlgn] )
Wi = = 58l lplla = 8 T Gl [0) T 38m0r T 580, (B a8 388y ) T 7SB(8) e T 58w

8,8 T fs’"‘(xmg..,g..,,yx.q,, 3= g..,,,gm,,x.q,g..q) = 38" 8un8un, 8, (&) T x”"'(E,..,,EM + 8unyrE, (,8,), — g.,,E,,(pgq)“,,)

.. which completely determine Weyl tensor of general RT & K geometries




Algebraic structure of the Weyl tensor

What is the most general type of RT & K geometries?

ds* = exp (2 [ O(r, u, x) dr) hpq(u, x) d’dx? +2g,,, dx’du — 2dudr + g, d’

o ¥y; =0 = algebraic type I or more special, k = 0, is a WAND

o \ill,-,-k =0 = all RT & K geometries are of type I(b)= I, or more special
How to continue?
Algebraically special RT & K spacetimes (type I1=I(ab) or more special)

@ perform the null rotation with / fixed to find more suitable frame
(see JP, RS (2016) for the D = 4 case)

@ discuss the algebraic structure w.r.t. optically privileged WAND k = 0,
(see JP, RS (2013, 2015) in any D)

Ptstep: nypell < W =ml 8= [(—1gupr +Ogup) r +©,] =0 et

To discuss specific conditions in the most general case is not very illustrative.

Explicit examples.




Explicit examples

RT spacetimes of a general Ricci type

Free scalar field in Einstein’s theory

a8 = 202 (4 + dy?) — 2dudr — 0 4 wien

p=pxy) k= k(x,y) C, v, w, n ... positive constants
U(u) = v exp(w?i® +nu) k= Alogp Ak=4Cw? ¢(r,u) = % log :g;g

© expansion: © = rU?(rPU? — Cz)il

o general Ricci type:  Rgpk?k? # 0
9 (atleast) Weyl typeIl: ¥ ;i =0 < g, =0 and ©; =0 (kisadouble WAND)

rU ,—k

Wy = %CzUm ... vanishing for k=0= U, BUT 3 nontrivial U(u)

... no type III, N type D & k = const

rU3/2p
Var = ~agage—cryr b
)




Explicit examples

Vacuum RT spacetimes in Einstein’s theory

ds? =1 hpg (AP + e du) (dx? + 7 du) — 2 dudr

R b(u) 2 1 2A 2
- [ D=2)(p=3) Tp=3 D=2 (€)1p = 27" hpg.u) T — DO—1)(D-2) '2] du
N———

a c

Constraints implied by the field equations:

Rpg = 2 R (D—4)R, =0
hpgu =2€0lg) + oy W™ Q)i + 3(D — 1) (D —2)be+ (D —2) b,y =0

type D= D >4

H@) | =0 b=0 < D(a)

(b) | always always < D(b)

I(c) | always Cipng =0 < D(c)

I(d) | always always < D(d)

il 1 (abcd)
Ia) | Rp,=0 equivalentto O
II(b) | always equivalentto O




Explicit examples

Type II and N Kundt waves on D and O backgrounds

ds? = gpg APdx? — 2dudr + (ar® + ¢) du?

where 8pq = 8pq(X) a = const ¢ = c(u,x)
type necessary and sufficient conditions
II(a) R=—-(D—-2)(D-3)a
1(b) Rpg = 515 8pg R

II(c) SCmpng = 0
1I(d) always

N TI(abcd)
(0] N with Clipllg = ﬁ &pq e
— 1
D “llpllg = p—3 8ra B¢
D(a) D with II(a)
D(b) D with II(b)
D(c) D with 1I(c)
D(d) D with II(d)




Conclusions

What have we done?

(geometries without twist and shear) in any dimension D was investigated.

Without employing any specific field equations:

@ coordinate components of the Riemann, Ricci and Weyl tensors were explicitly calculated
@ the Weyl tensor components were expressed in an adapted null frame
@ Robinson-Trautman and Kundt geometries are of type I(b) (or more special)
@ possible algebraically special types w.r.t. multiple WAND k = 9, were identified
JP and RS (2015)

@ existence of other WANDS (principal null directions) was discussed in D = 4
JP and RS (2016)

More details can be found in:

o Explicit algebraic classification of Kundt geometries in any dimension
P and RS, Class. Quantum Grav. 30, 125007 (2013)

@ Algebraic structure of Robinson—Trautman and Kundt geometries in arbitrary dimension
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Thank you for your attention!
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