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INTRODUCTIONINTRODUCTION  

• Nonminimally coupled (NMC) gravity is a modification of 
General Relativity that has been applied to astrophysical and 
cosmological problems as a possible alternative to the 
standard scenario of dark matter and dark energy. 

• The nonrelativistic limit of NMC gravity consists of the 
Newtonian potential plus a Yukawa perturbation. 

• A parametrized post-Newtonian plus Yukawa (PPNY) 
approximation of NMC gravity is devised (Naf and Jetzer, 
2010, for f(R) gravity).  

• The Yukawa potential can be long ranged with small strength. 

• Measurement of perihelion precession of Mercury orbit, 
resulting from MESSENGER data, can be converted into 
constraints on NMC gravity parameters. 
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NONMINIMALLY  COUPLED  GRAVITYNONMINIMALLY  COUPLED  GRAVITY 

• The action functional of NMC gravity is (Bertolami et al. 2007): 

 

 

• R  is the spacetime curvature,       is the metric determinant, 

                    is the Lagrangian density of matter,      is mass density. 

 

• General Relativity (GR) is recovered by taking 

 

 

•                  corresponds to            gravity theory. 

•             yields the NMC between geometry and matter. 
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METRIC AND ENERGYMETRIC AND ENERGY--MOMENTUM TENSORMOMENTUM TENSOR 
• The metric tensor is of the form 

            is the Minkowski tensor;  1/c expansion of         (as in PPN): 

 

 

 

• Components of  energy momentum tensor          (as in PPN): 

 

 

 

 

• where matter is considered as a perfect fluid with density , 
velocity v, pressure p, and specific energy density .  
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ASSUMPTIONS ON FUNCTIONS OF CURVATUREASSUMPTIONS ON FUNCTIONS OF CURVATURE  
 

• We assume the functions             and               to be analytic at 
R=0.  Hence       and       admit the Taylor expansions:   

 

 

 

 

• If                           and                    the action of GR is recovered. 

• The coefficients                        (parameters of the NMC model) 
will be used to compute the metric at the required order. 

• Negative powers in      would be required in order  to model 
dark matter/dark energy (not considered here). 
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FIELD  EQUATIONS OF NMC GRAVITYFIELD  EQUATIONS OF NMC GRAVITY  
 

• The first variation of the action functional with respect to the 
metric yields the field equations:   

 

 

 

 

•                                                  is the Lagrangian density of matter, 
 is mass density,           is the Ricci tensor,          is the energy- 
momentum tensor,           is the covariant derivative. 

 

• The field equations are solved by a perturbative method. 

 

 

 

GR21 Conference 2016 

       TfffgfRff mRRmRR

221121 12
2

1
2  LL




  gg

2cm L,/ dRfdf ii

R 

R T





NONRELATIVISTIC  LIMITNONRELATIVISTIC  LIMIT   

• At order O(1/c2) we obtain the equations of Yukawa type:   

 

 

 

 

•       is curvature at order O(1/c2),              are NMC parameters.  

 

• the solution for the 0-0 component of the metric at order 
O(1/c2)  is the Newtonian potential plus a Yukawa potential: 
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YUKAWA  POTENTIALYUKAWA  POTENTIAL   

•            is the Newtonian potential plus a Yukawa potential: 

 

 

 

• The range  of the Yukawa potential is 

 

 

• The strength  of the Yukawa potential is 

 

 

   Long range (astronomical) effects are possible if                                                     
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PPNY  APPROXIMATIONPPNY  APPROXIMATION  
 

• The i-j components of field equations at order O(1/c2) are:   

 

 

 

•       is curvature at order O(1/c2),              are NMC parameters.  

 

• Diagonal solution after gauge transformation: 

 

 

                                                         

•                                                      while in the case f 2(R)=0,  =1/2.  
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00--00  COMPONENT AT ORDER COMPONENT AT ORDER O(1/cO(1/c44))  
 

• The expression of         is long and the leading term is:   

 

 

 

 

•                     are NMC parameters;                is the GR term;  
  

dots … denote the sum of further potentials; some are of type 
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METRIC AROUND A STATIC, SPHERICAL BODYMETRIC AROUND A STATIC, SPHERICAL BODY   

• Uniform density is assumed (MS ,RS: mass, radius of the body):   

 

 

 

 

• U(r) is the Newtonian potential, Y(r) is the Yukawa potential;  
F(r) is a further potential depending on exponential functions. 

  

The leading term in the Yukawa strength  for >>RS is 
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DEVIATION FROM GEODESICSDEVIATION FROM GEODESICS  
 

• The energy-momentum tensor is not covariantly conserved:   

 

 

• Consequently, the trajectories deviate from geodesics: 
  

 

 

Moreover, geodesics are different with respect to GR. 

• Computation of the orbit of a planet around the Sun when 

 

     L = semilatus rectum of the unperturbed orbit.                                                  
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PERIHELION PRECESSIONPERIHELION PRECESSION  
 

• Leading term in formula for perihelion precession of a planet: 

 

 

 

 

                                             MS ,RS ,L=mass, radius, semilatus rectum 

 

• The first row contains the GR precession + Yukawa precession; 

the second row contains the NMC relativistic correction; 

dots … correspond to contribution from further potentials.                                               

Constraints on                      from observation of Mercury orbit.  
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CONSTRAINTS FROM MERCURY OBSERVATIONCONSTRAINTS FROM MERCURY OBSERVATION  
 

• Prediction of perihelion precession assuming a PPN metric: 

 

 

, are PPN parameters, J2  is the quadrupole moment of the Sun 

• Cassini bound on  and bound on  from fits to planetary data 
including data from MESSENGER (Fienga et al., 2011) yield 

 

• We assume that the additional perihelion precession due to 
NMC deviations from GR is given by 

                                        

Formula for P then yields exclusion plots for NMC parameters: 
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EXCLUSION PLOTS IN THE PLANE (EXCLUSION PLOTS IN THE PLANE (,,))  
 

 

 

        

 

 

 

 

 

 

Left:  =50L,  -1={10-13,2x10-13,10-12}  (light, medium, dark grey) 

Right: =50L,  -1={10-10,2x10-10,10-9}  (light, medium, dark grey)  
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EXCLUSION PLOTS IN PLANES (EXCLUSION PLOTS IN PLANES (,,) AND () AND (,,))  
 

 

 

        

 

 

 

 

 

 

               Left:  =50L, =0                                 Right: =50L, =0  
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EXCLUSION PLOTS IN PLANES (EXCLUSION PLOTS IN PLANES (,,  ) AND () AND (,,  ))  
 

 

 

        

 

 

 

 

 

 

Left:  ==0                                   

Right:  =0,  -1={10-10,2x10-10,10-9}  (light, medium, dark grey) 
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CONCLUSIONSCONCLUSIONS  

• The nonrelativistic limit of NMC gravity consists of the 
Newtonian potential plus a Yukawa perturbation. 

• A parametrized post-Newtonian plus Yukawa (PPNY) 
approximation of NMC gravity has been devised.  

• The Yukawa potential can be long ranged with small strength, 
and the NMC avoids problems like   =1/2. 

• Observations at the Solar System scale can constrain the 
parameters of the model. 

• The results obtained might be relevant for distinguishing 
between GR, f(R) and nonminimally coupled theories from the 
analysis of detailed observations data in the future. 
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