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Tidal Deformations NS Tides with Spin Explaining the Dynamical Response


Tides in Compact Binaries


Tidal deformations impact the phase of the gravitational waves
produced by the inspiral of compact bodies in a binary system.


I A body’s tidal deformability is measured by its Love
numbers, which encode dependence on internal structure


The Love numbers are potentially measurable with LIGO, and
are useful for...


I Probing the NS EoS [Flanagan & Hinderer 0709.1915 ]


I I-Love-Q relations [Yagi & Yunes 1302.4499 ]
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Relativistic Tides


A relativistic theory of tidal deformations has been developed
to treat tides in compact binaries.
[Damour & Nagar 0906.0096, Binnington & Poisson 0906.1366 ]


I In GR, there are two types of tidal fields


I The gravitoelectric field Eab raises mass multipoles
I The gravitomagnetic field Bab induces current multipoles


We need to incorporate spin in this framework, for
astrophysical relevance. [Pani et al. 1503.07365, PL & Poisson 1503.07366 ]


I Non-linearity of the EFE produces coupling between the
body’s angular momentum and the tidal field


I The coupling is analytically tractable at O(1) in the spin
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Tides on a Spinning NS
Consider a rigidly rotating NS subject to a stationary
gravitomagnetic tidal field Bab.


How is the NS affected by the applied tide?


The NS responds
dynamically to the tidal field.


I Bab induces time-dependent internal fluid motions
I Interior metric variables also acquire a time dependence
I The dynamical response varies on the timescale of the NS


rotation period


Nonetheless, the external metric remains perfectly stationary.
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I Interior metric variables also acquire a time dependence


I The dynamical response varies on the timescale of the NS
rotation period


Nonetheless, the external metric remains perfectly stationary.







Tidal Deformations NS Tides with Spin Explaining the Dynamical Response


Stationary Tides


During the inspiral stage, a slowly rotating NS and its binary
companion are well-separated.


b� R implies...


I Small tides δR/R� 1
– work to O(1) in tides


I Tint ∼ Trot � Torb
– stationary tides


χ� 1 implies...


I Slow rotation
– work to O(1) in spin


I Linearized Kerr background
– universal exterior geometry
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Gravitomagnetic Tides with Spin


Generic stationary
gravitomagnetic tidal
moment Bab sourced
by distant matter.


Tidal environment →
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Gravitomagnetic Tides with Spin


Interior Surface


External Solution


Bab × χa


(` = 2) (` = 1)


⇓
(` = 1), (` = 2),


(` = 3)


I Construct metric ansatz
with all possible
spin-coupled tidal moments


I EFE determine metric
functions up to integration
constants (Love numbers)


I Solution is stationary


Tidal environment →
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Gravitomagnetic Tides with Spin


Internal Solution


Surface


External Solution


I Specify (barotropic)
EoS and impose
vorticity conservation


I Solve the EFE-Euler
system for metric and
fluid variables


I Solution is
time-dependent


I Construct metric ansatz
with all possible
spin-coupled tidal moments


I EFE determine metric
functions up to integration
constants (Love numbers)


I Solution is stationary


Tidal environment →
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Gravitomagnetic Tides with Spin


Internal Solution


Surface


External Solution


I Specify (barotropic)
EoS and impose
vorticity conservation


I Solve the EFE-Euler
system for metric and
fluid variables


I Solution is
time-dependent


I Construct metric ansatz
with all possible
spin-coupled tidal moments


I EFE determine metric
functions up to integration
constants (Love numbers)


I Solution is stationary


Interior and exterior metrics still match across surface!


Surface Tidal environment →
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Circulation Theorem


For a barotropic fluid, the circulation theorem says vorticity
ωαβ = ∇[α


(
huβ]


)
is conserved along the fluid worldines.


I The tidal perturbation
displaces fluid elements
by ξ, and perturbs their
velocity u by δu


For a perturbation switched on adiabatically, the circulation
theorem says


∆ωαβ = 0 .
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Conservation of Vorticity


Let’s look at the consequences of ∆ωαβ = 0 for the angular
components of the fluid variables.


At O(0) in the spin, At O(1) in the spin,


I ωαβ = 0


I ∆ωαβ = 0 ⇒ ξA ∝ t
I ⇒ δuA stationary


I Irrotational fluid motions
are established


I ωαβ 6= 0


I ∆ωαβ = 0 ⇒ δuA ∝ ξA
I ⇒ δuA ∝ t
I Dynamical fluid motions


are established


The EFE pass on the linear time dependence to other metric
and fluid variables.
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Driven Harmonic Oscillator


Consider an analogy with a driven harmonic oscillator.


I The displacement ξ satisfies an inhomogeneous DE


I We suppose the driving force F is stationary


ξ(t,x) =
∑


λ aλ(t)zλ(x) , fλ =
∫
F · zλ d3x


Mode equation: äλ + ωλ
2aλ = fλ


Solutions: aλ = ωλ
−2fλ for ωλ 6= 0


aλ =
1


2
fλt


2 for ωλ = 0


Zero-frequency modes give rise to displacements ξ ∝ t2, which
imply velocities u ∝ t.
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Zero-Frequency Modes


We propose that zero-frequency modes in NSs are driving the
dynamical tidal response.


I What are these zero-frequency modes?


In non-rotating stars, there exist zero-frequency modes called
r-modes and g-modes.


I At O(0) in the spin,
I The overlap integral between Bab and the r-modes or


g-modes is zero


I At O(1) in the spin,
I The overlap integral is non-zero!


The dynamical response here may be related to the rotational
modes of relativistic stars.
[Andersson gr-qc/9706075, Lockitch et al. gr-qc/0008019 ]
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Timescale for Onset of Instability
The linear growth of the fluid velocity is a dynamical instability
in our O(1) perturbative expansion in tides and spin.


I How long does it for the perturbation theory to break
down, i.e. for δuA = uA ?


T = 0.25


(
12 km


R


)(
1.4 M�
M ′


)3/2( b


50 km


)7/2


s


I Compare with...


Tdynamical = 6× 10−4
(


1.4 M�
M


)1/2( R


12 km


)3/2


s


Tviscous = 9× 107
(


1.4 M�
M


)(
T


109 K


)2( R


12 km


)5


s


[Friedman & Stergioulas 2013 ]
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Summary


When subjected to a stationary gravitomagnetic tidal field, a
slowly rotating NS responds dynamically: internal fluid and
metric variables acquire a linear time dependence.


I The dynamical response follows from conservation of
vorticity at O(1) in the spin


I It is driven by the zero-frequency modes of the fluid


A post-Newtonian analysis confirms this explanation, and
provides further insight into the instability.
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Introduction
Tidal deformations of compact objects have attracted a lot of attention since it was noticed that tidal
effects may have observable consequences on the gravitational waves emitted by binary systems.


In Newtonian gravity, the tidal deformability of a star is characterized by the so-called Love num-
bers. This has been generalized to general relativity, and relativistic Love numbers have been defined
for nonrotating stars.


The case of rotating stars has been investigated only very recently [2, 3, 4]. The situation becomes
more complex because of couplings between the tidal perturbation and the star’s rotation, and new
kinds of Love numbers emerge.


In a recent article [1], Landry and Poisson considered the tidal perturbation of the internal fluid vari-
ables for a rotating neutron star. Working in fully relativistic perturbation theory, they showed that,
for an external gravitomagnetic tidal field, the internal response is dynamical, even if the tidal field
is stationary. They suggested that this result might be understood in terms of zero-frequency stellar
modes. However, the perturbative framework cannot distinguish between a response that is bounded
or linearly growing with time.


In this work, we perform a post-Newtonian analysis to get more insight into this problem. We
consider an external gravitomagnetic tidal field, and work through the fluid perturbation equations,
assuming the star to be slowly rotating.


In this framework, the perturbed fluid variables turn out to be fully dynamical as expected, and they
are dominated by zero-frequency modes which are growing with time.


Post-Newtonian framework
The interior of the star is described by the fluid variables {ρ, p,Π,v}, with ρ the conserved mass
density, p the pressure, v the velocity and Π := ε/ρ with ε the internal energy density.


The tidal environment is described by the gravitomagnetic symmetric tracefree tensor Bab, which
we allow to vary with time and schematically represent by the function B(t). It induces the gravito-
magnetic vector potential


U tidalj = −1
6εjkpB


p
l x
kxl. (1)


The dynamics of the fluid is governed by the post-Newtonian Euler equation


ρ
dvj


dt
=− ∂jp + ρ∂jU


+ 1
c2


[(
1
2v


2 + U + Π + p


ρ


)
∂jp− vj∂tp


]


+ 1
c2ρ
[(
v2 − 4U


)
∂jU − vj


(
3∂tU + 4vk∂kU


)
+ 4∂tUj


+4vk
(
∂kUj − ∂jUk


)
+ ∂jΨ


]


+ O(c4),


(2)


with U the body’s gravitational potential, ∇2U = −4πGρ. The total vector potential is Uj =
U tidalj + U


body
j , where the vector potential created by the body is given by ∇2Uj = −4πGρvj.


Ψ is an auxiliary potential whose expression won’t be needed. The terms of order O(1) give the usual
Newtonian Euler equation, the terms of order O(c−2) are post-Newtonian corrections.


Equilibrium configuration
The unperturbed configuration is a spherical star at hydrostatic equilibrium. The fluid variables are
determined by


dU


dr
= −Gm(r)


r2 , (3)


dp


dr
= −Gm(r)


r2 ρ, (4)


where m(r) is the mass inside the radius r, together with an equation of state p = p(ρ). We assume
that the perturbed fluid satisfies the same equation of state (barotropic fluid).


Nonrotating star
We consider perturbations away from the equilibrium configuration induced by the external tidal field,
and write the perturbed Euler equation up to order O(c−2). We first take the star to be nonrotating.
The perturbed fluid variables are {vj, δp, δρ, δU}. It turns out that δp = δρ = δU = 0 and the
equation reduces to


∂tv
j = 4


c2∂tU
tidal
j + O(c−4), (5)


from which
vj = 4


c2U
tidal
j + O(c−4). (6)


Rotating star
We next take the star to be rotating with angular velocity Ω. In the unperturbed state, the velocity field
is


vj = εjklΩkxl. (7)


Now the unperturbed configuration is the rotating star, and we consider the perturbations induced
by the tidal field. The perturbed fluid variables are {δvj, δp, δρ, δU}. The Eulerian perturbation of
Euler’s equation can be written as


∂tδv
j + vk∂kδv


j + ∂kv
jδvk =− 1


ρ
∂jδp + δρ


ρ
∂jU + ∂jδU


+ 4
c2


[
∂tU


tidal
j + vk(∂kU tidalj − ∂jU tidalk )


]


+ O(c−4).


(8)


The other equations that determine the perturbed variables are


• The relation between the velocity perturbation δvj and the Lagrangian displacement vector ξj


δvj = ∂tξ
j + vk∂kξ


j − ξk∂kvj, (9)


• The mass conservation equation
δρ = −ξk∂kρ− ρ∂kξk, (10)


• The Poisson equation
∇2δU = −4πGδρ. (11)


Since the fluid is barotropic, we also have


δp = p′


ρ′
δρ. (12)


Analysis of the perturbation equations
To deal with those equations, we use spherical coordinates, expand all quantities in scalar and vector
spherical harmonics, and write all perturbation equations for each sector (l = 1, 2, 3) to first order
in Ω, assuming the star to be slowly rotating. Furthermore, we perform a mode analysis of those
equations, assuming the fluid to be barotropic.


• We find that the response of the star must be dynamical, even if the tidal field is stationary. For
instance, one of the spherical harmonic coefficients for δvj satisfies


∂tv̂q = −2
9r


3B(t) (13)


• Doing a mode analysis, the displacement vector can be written as a superposition of forced modes


äλ + ω2
λaλ = fλ. (14)


For zero-frequency modes, this gives
äλ = fλ, (15)


and the response is growing with time.
We find that the tidal perturbation excites the zero-frequency modes (g-modes and r-modes). The
perturbation will be dominated by the corresponding growing terms. For those modes, the varia-
tions of pressure, density and internal potential vanish.


• The modes with nonzero frequency give rise to oscillating terms, which will be small with respect
to the zero-frequency terms.


Conclusions
• We confirm the result of [1] that the response of a rotating neutron star to a gravitomagnetic tidal


field is dynamical. Our post-Newtonian framework enables to have more explicit expressions for
the fluid perturbations.


• This time dependence can be interpreted in terms of zero-frequency modes of the star. Those zero-
frequency modes give rise to perturbations which are growing with time and give the leading part
of the perturbation. This effect is not present in the gravitoelectric sector. More work is needed to
obtain an explicit description of the modes.


• The presence of those growing terms hints of an instability.
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