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Why compute 〈Tab〉?


• Good way to study quantum effects
• Could provide insight into the information issue and the


question what is the end point of black hole evaporation?
• Needed to solve the semiclassical backreaction equations


Gab = 8π〈Tab〉


• Numerical computations in 4D have been done for eternal
black holes but not those that form from collapse







Technical difficulties


• Wave equations for the quantum fields are not completely
separable


• Renormalization scheme that works for numerical
computations must be worked out







Way to Sidestep PDE’s


Compute 〈Tab〉 in a spacetime


• that is a solution to the classical Einstein equations
• that is spherically symmetric
• has matter in the form of a collapsing shell


Advantages
• Flat space inside the shell - solutions to mode equation are


known
• Schwarzschild spacetime outside - mode equation is


separable
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Spherically Symmetric Collapsing Null Shell


• Used by Vilkovisky, Fabbri and Navarro-Salas, ... to study
aspects of the Hawking effect in 4D


Flat


Sch







Method to Compute the Stress Tensor


• Massless minimally coupled scalar field φ with �φ = 0


• Stress tensor is 〈Tab〉= limx ′→x DabG(1)(x,x ′)
• G(1)(x,x ′) = 〈in|{φ(x),φ(x ′)}|in〉
• Expand φ in terms of modes


f in
ω`m =


Y`m(θ ,φ)


r
√


4πω
ψ


in
ω`(t , r)


• Find


G(1)(x,x ′) = ∑
`,m


∫
∞


0
dω{f in


ω`m(x)f in∗
ω`m(x ′) + cc}


• Inside the shell f in is flat space mode function
• Problem is finding f in outside the shell
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f in in Sch region


v = v0


I −


• Want to compute 〈Tab〉 in the shaded region


• Know f in on v = t + r = v0 and on I − for v > v0


• Expand f in in terms of a complete set of Schwarzschild
modes
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Pure Schwarzschild Modes


I −H−


H+ I +


• Complete orthonormal set: fH− and fI − .
• On H−, fH− ∼ e−iω(t−r∗)


• On I −, fI − ∼ e−iω(t+r∗)







Expansion of the in modes


• In pure Schwarzschild spacetime


(f in
ω`m)Sch = ∑


`′,m′


∫
∞


0
dω
′
[
AI −


ω`mω ′`′m′ f
I −
ω ′`′m′ + BI −


ω`mω ′`′m′(f
I −
ω ′`′m′)


∗


+AH−
ω`mω ′`′m′ f


H−
ω ′`′m′ + BH−


ω`mω ′`′m′(f
H−
ω ′`′m′)


∗
]


• Modes are orthonormal w.r.t. the scalar product


(φ1,φ2) =−i
∫


Σ
dΣ
√


gΣna
φ1
↔
∂ a φ


∗
2


• So
AI −


ω`mω ′`′m′ =
(


(f in
ω`m)Sch, fI −


ω ′`′m′


)







Expansion of the in modes


• In pure Schwarzschild spacetime


(f in
ω`m)Sch = ∑


`′,m′


∫
∞


0
dω
′
[
AI −


ω`mω ′`′m′ f
I −
ω ′`′m′ + BI −


ω`mω ′`′m′(f
I −
ω ′`′m′)


∗


+AH−
ω`mω ′`′m′ f


H−
ω ′`′m′ + BH−


ω`mω ′`′m′(f
H−
ω ′`′m′)


∗
]


• Modes are orthonormal w.r.t. the scalar product


(φ1,φ2) =−i
∫


Σ
dΣ
√


gΣna
φ1
↔
∂ a φ


∗
2


• So
AI −


ω`mω ′`′m′ =
(


(f in
ω`m)Sch, fI −


ω ′`′m′


)







Expansion of the in modes


• In pure Schwarzschild spacetime


(f in
ω`m)Sch = ∑


`′,m′


∫
∞


0
dω
′
[
AI −


ω`mω ′`′m′ f
I −
ω ′`′m′ + BI −


ω`mω ′`′m′(f
I −
ω ′`′m′)


∗


+AH−
ω`mω ′`′m′ f


H−
ω ′`′m′ + BH−


ω`mω ′`′m′(f
H−
ω ′`′m′)


∗
]


• Modes are orthonormal w.r.t. the scalar product


(φ1,φ2) =−i
∫


Σ
dΣ
√


gΣna
φ1
↔
∂ a φ


∗
2


• So
AI −


ω`mω ′`′m′ =
(


(f in
ω`m)Sch, fI −


ω ′`′m′


)







Method


I −H−


H+ I +


• Key point: Matching is done in pure Schwarzschild


• Use Cauchy surface in red to compute matching
coefficients


• Then compute f in = ∑`′,m′
∫


∞


0 dω ′AI −
ω`mω ′`′m′ f


I −
ω ′`′m′ + . . .


• Then compute G(1) and 〈Tab〉
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Renormalization


Use point splitting - Christensen (1976)


• Adapted for numerical computations in static BH
spacetimes - Candelas and Howard (1984), Jensen and
Ottewill (1989), Anderson, Hiscock, and Samuel (1995),
Levi and Ori (2015)


• More adaptation may be necessary here


Alternative: Compute difference with Unruh state


〈in|Tab |in〉ren = (〈in|Tab in〉u−〈U|TabU〉u) + 〈U|TabU〉ren
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Connection with the Unruh state


(f in
ω`m)Sch = ∑


`′,m′


∫
∞


0
dω
′
[
AI −


ω`mω ′`′m′ f
I −
ω ′`′m′ + BI −


ω`mω ′`′m′(f
I −
ω ′`′m′)
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ω ′`′m′)


∗
]


• For the Unruh state, the complete set of modes are: fK


(positive freq. in Kruskal time on H−) plus the fI − modes


fK
ω`m = ∑


`′,m′


∫
∞


0
dω[αK


ω`m,ω ′`′m′ f
H−
ω ′`′m′ + β


K
ω`mω ′`′m′ f


H− ∗
ω ′`′m′ ]


• For ω � ω ′ and ω
′ 2� (M/r3, `2/r2), AH− →−αK and


BH− →−β K
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2D Stress Tensor


• Computed by Hiscock (1981)
• Energy flux approaches Unruh value







Particle Production for 2D Case


• Computed by Good, Anderson, and Evans
• Use wave packets


fout
jn ≡


1√
ε


∫ (j+1)ε


jε
dωe2π iωn/ε fout


ω .


• j corresponds to frequency interval and n to time interval
• Match the in and out modes and use packets to obtain a


time dependent spectrum











Summary


• A method to compute the stress tensor in a spacetime that
forms from collapse of a spherically symmetric null shell
has been discussed


• A mathematical connection between the matching
coefficients for the in state and the Unruh state has been
found


• Time-dependent spectrum of the produced particles has
been computed in 2D showing the approach to a thermal
state


• We plan to compute the stress tensor in 4D and also the
time-dependent spectrum of the produced particles






