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November 1915 - the completion of general relativity
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Nov.	  	  4th,	  1915

(78 Gesaintsitzung vom 4. Novembei- 1915

Zur allgemeinen Relativitätstheorie.

Von A. Einstein.

In den letzten Jahren war ich bemülit, auf die Voraussetzung der Re-

lativität auch nicht gleichförmiger Bewegungen eine allgemeine Re-

lativitätstheorie zu gründen. Ich glaubte in der Tat, das einzige Gra-

vitationsgesetz gefunden zu haben, das dem sinngemäß gefaßten, all-

gemeinen Relativitätspostulate entspricht, und suchte die Notwendigkeit

gerade dieser Lösung in einer im vorigen Jahre in diesen Sitzimgs-

berichten erschienenen Arbeit' darzutun.

Eine erneute Kritik zeigte mir, daß sich jene Notwendigkeit auf

dem dort eingeschlagenen Wege absolut nicht erweisen läßt ; daß dies

doch der Fall zu sein schien, beruhte auf Irrtum. Das Postulat der

Relativität, soweit ich es dort gefordert habe, ist stets erfüllt,

wenn man das HAMiLTONSche Prinzip zugrunde legt; es liefert aber

in Wahrheit keine Handhabe für eine Ermittelung der HAMiLxoNScIien

Funktion H des Gravitationsfeldes. In der Tat drückt die die Wahl
von H einschränkende Gleichung (77) a. a. 0. nichts anderes aus, als

daß H eine Invariante bezüglich linearer Transformationen sein soll,

welche Forderung mit der der Relativität der Beschleunigung nichts zu

schaffen hat. Ferner wird die durch Gleichung (78) a. a. O. getroffene

Wahl durch Gleichung (77) keineswegs festgelegt.

Aus diesen Gründen verlor ich das Vertrauen zu den von mir
aufgestellten Feldgleichungen vollständig und suchte nach einem Wege,
der die Möglichkeiten in einer natürlichen Weise einschränkte. So ge-

langte ich zu der Forderung einer allgemeineren Kovarianz der Feld-

gleichungen zurück, von der ich vor drei Jahren, als ich zusammen
mit meinem Freunde Grossmanx arbeitete, nur mit schwerem Herzen
abgegangen war. In der Tat waren wir damals der im nachfolgenden

gegebenen Lösung des Problems bereits ganz nahe gekommen.
Wie die spezielle Relativitätstheorie auf das Postulat gegründet

ist, daß ihre Gleichungen bezüglich linearer, orthogonaler Transfor-

' Die füi-malc Grundlage der allgemeinen Relativitätstheorie. Sitzungslierichte

XLI, 1914, S.1066— 1077. Im folgenden werden Gleichungen dieser Abhandhmgen beim
Zitieren durch den Zusatz a.a.O... von solrhen der vorlienenden Arbeit unterschieden.

Nov.	  11th,	  1915
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Zur allgemeinen Relativitätstheorie (Nachtrag).

Von A. Einstein.

In einer neulich erschienenen Untersuchung' habe ich gezeigt, wie auf
RiBMANNS Kovariantentlieoiie mehrdimensionaler Mannigfaltigkeiten eine
Theorie des (Gravitationsfeldes gegründet werden kann. Hier soll nun
dargetan werden, daß durch Einfuhrung- einer allerdings kühnen zu-
sätzlichen Hypothese über die Struktur der Materie ein noch strafferer
logischer Aufbau der Theorie erzielt werden kann.

Die Hyjjothese, deren Berechtigung in Erwägung gezogen werden
soll, betrift't folgenden Gegenstand. Der Energietensor der »Materie«

T^' besitzt einen Skalar ^ 2'„" . Es ist wohlbekannt, daß dieser für

das elektromagnetische Feld verschwindet. Dagegen scheint er für die
eigentliche Materie von Null verschieden zu sein. Betrachten wir
nämlich als einfachsten Spezialfall die »inkohärente« kontinuierliche
Flüssigkeit (Druck vernachlässigt), so pflegen wir ja für sie zu setzen

dx„ dx„

so daß wir haben

^'"" = ^-^''° ds ds

^T:=%g^,.T- = py-g.

Hier verschwindet also nach dem Ansatz der Skalar des Energio-
tensors nicht.

Es ist nun daran zu erinnern, daß nach unseren Kenntnissen
die »Materie« nicht als ein primitiv Gegebenes, physikalisch Einfaches
aufzufassen ist. Es gibt sogar nicht wenige, die hoff'en, die Materie auf
rein elektromagnetische Vorgänge reduzieren zu können, die allerdings
einer gegenüber Maxwells Elektrodynamik vervollständigten Theorie
gemäß vor sich gehen würden. Nehmen wir nun einmal an, daß in

einer so vervollständigten Elektrodynamik der Skalar des Energie-
tensors ebenfalls verschwinden würde! Würde dann das soeben auf-

gezeigte Resultat beweisen, daß die Materie mit Hilfe dieser Theorie
nicht konstruiert werden könnte? Ich alaube diese Fras:e verneinen

' Diese Sitzungsberichte S. 778.

Nov.	  18th,	  1915

Nov.	  25th,	  1915
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The first experimental verification - November 18th, 1915
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Anomalous precession of the Mercury orbit

	  	  Albert	  Einstein	  to	  Arnold	  Sommerfeld	  (Dec	  9th,	  1915):	  

  Wie kommt uns da die pedantische Genauigkeit der Astronomie zu Hilfe, 
  über die ich mich im Stillen früher of lustig machte!” 
  [“How helpful to us here is astronomy’s pedantic accuracy, 
    which I often used to ridicule secretly!” ]	  
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The first experimental verification - November 18th, 1915
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Anomalous precession of the Mercury orbit

Deflection of light by the Sun, gravitational redshift
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Map data ©2016 INEGI Imagery ©2016 NASA, TerraMetrics500 km 

The first light deflection experiment - May 29th, 1919
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Sobral

332 SIR F. W. DYSON, PROF. A. S. EDDINGTON AND MR. C. DAVIDSON ON A 

Thus the results of the expeditions to Sobral and Principe can leave little doubt that 
a deflection of light takes place in the neighbourhood of the sun and that it is of the 
amount demanded by EINSTEIN'S generalised theory of relativity, as attributable to 
the sun's gravitational field. But the observation is of such interest that it will 
probably be considered desirable to repeat it at future eclipses. The unusually 
favourable conditions of the 1919 eclipse will not recur, and it will be necessary to 
photograph fainter stars, and these will probably be at a greater distance from the sun. 
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Diagram 2. 

This can be done with such telescopes as the astrographic wvith the object-glass stopped 
down to 8 inches, if photographs of the same high quality are obtained as in regular 
stellar work. It will probably be best to discard the use of coelostat mirrors. Thise 
are of great convenience for photographs of the corona and spectioscopIc observations, 
but for work of precision of the high order required, it is undesirable to introduce 
complications, which can be avoided, into the optical train. It would seem that some 
form of equatorial mounting (such as that employed in the Eclipse Expeditions of the 
Lick Observatory) is desirable. 

In conclusion, it is a pleasure to record the great assistance given to the Expeditions 
from many quarters. Reference has been made in the course of the paper to some 
of these. Especial thanks are due to the Brazilian noverument for- the hospitality 
and facilities accorded to the observers in Sobral. They were made guests of the 

New
ton

GR

[	  Dyson	  et	  al.	  1920	  ]

Principe: 
δ⊙ = 1.61” ± 0.30”  
Sobral: 
δ⊙ = 1.98” ± 0.12”

Sobral
Principe

Five	  Millennium	  Canon	  of	  Solar	  Eclipses	  Database	  (X.M.	  Jubier)	  
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Some modern Solar system experiments
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0.15%

0.01%

0.001%

0.003%

0.3% / 19%

0.02%

Solar	  system	  is	  slow-‐moRon	  weak-‐field	  regime: (v/c)2 ⇠ |�|/c2 . 10�6
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Two questions about gravity beyond the Solar system
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NASA

Do	  gravitaRonal	  waves	  exist?Do	  strongly	  self-‐gravitaRng	  bodies	  	  
move	  as	  predicted	  by	  GR?

AEI
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  Gravity regimes relevant for this talk
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(1) Quasi-‐staRonary	  	  
weak-‐field	  	  
regime  
 
 

(2) Quasi-‐staRonary	  	  
strong-‐field	  	  
regime  
 
 

(3) RadiaRve	  	  
regime  
 
 

(4) Highly	  dynamical	  	  
strong-‐field	  
regime

	  Solar	  system	  	  
	  experiments	  

	  Binary	  pulsar	  experiments	  

	  GW	  astronomy	  
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The discovery of pulsars - 1967
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Interplanetary	  ScinRllaRon	  Array

PSR B0531+21

NASA, ESA

 f ~ 30 Hz

M ⇡ 1.4M�

R ⇡ 12 km

B ⇠ 1012 G

�c/c2 ⇡ �0.4

⇢c ⇡ 1015 g/cm3

Illustration: NASA
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The radio pulsar population
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~	  2500	  	  radio	  pulsars	  
1.4	  ms	  	  (PSR	  J1748-‐2446ad)	  
8.5	  s	  	  	  	  	  (PSR	  J2144-‐3933)	  

~	  10%	  in	  binary	  systems	  

Orbital	  period	  range	  

95	  min	   (PSR	  J0024-‐7204R)	  
>200	  yr	  	  	  	  (PSR	  	  J1024−0719)	  

Companions	  

ordinary	  stars,	  	  
white	  dwarfs,	  	  
neutron	  stars,	  	  
planets	  
SRll	  missing:	  black	  hole

[ ATNF pulsar catalogue]
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   Pulsar timing – time of arrival (TOA)
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Timing	  precision	  for	  some	  millisecond	  pulsars	  <	  100	  ns	  	  	  à <	  30	  m

Time (ms)
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   Pulsar timing - the timing model
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pulsar system

interstellar medium

Solar system barycenter

⌧psr / T , � = �0 + ⌫T + 1
2 ⌫̇T

2
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   Pulsar timing - the timing model
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pulsar system

interstellar medium

Solar system barycenter

⌧psr / T , � = �0 + ⌫T + 1
2 ⌫̇T

2
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TOA residual

model

fold fold

Session i Session j

Phase-‐connected	  Rming	  soluRon:

 Pulsar timing - parameter estimation

14

[ Zhu et al. 2015 ]

PSR	  J1713+0747
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  What do we mean by precision timing?  Best of…
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Spin	  parameters:	  
	  Period:	   	   	   	   	   	   	   2.947108069160717(3)	  ms	  	  	   (Reardon	  et	  al.	  2015)	  

Astrometry:	  
	  PosiRon	  in	  the	  sky:	  	   	   	   	   0.6	  μas	   	   	   	   	   (Reardon	  et	  al.	  2015)	  
	  Proper	  moRon:	  	  	  	  	  	  	  	   	   	   	   140.911(3)	  mas/yr	   	   	   (Reardon	  et	  al.	  2015)	  
	  Distance:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	   	   	   156.79	  ±	  0.25	  pc	   	   	   (Reardon	  et	  al.	  2015)	  

Orbital	  parameters:	  
	  Orbital	  period:	   	   	   	   	   0.102251562472(1)	  days	   (Kramer	  et	  al.	  in	  prep.)	  
	  Projected	  semi-‐major	  axis	   	   	   31,656,123.76(15)	  km	   	   (Freire	  et	  al.	  2011)	  
	  Eccentricity:	   	   	   	   	   	   0.0000749402(6)	   	   	   (Zhu	  et	  al.	  2015)	  

Masses:	  
	  Masses	  of	  neutron	  stars:	  	  	   	   	   1.33816(2)	  /	  1.24891(2)	  M⊙	  	   (Kramer	  et	  al.	  in	  prep.)	  
	  Mass	  of	  low-‐mass	  WD:	  	   	   	   	   0.207(2)	  M⊙	   	   	   	   (Reardon	  et	  al.	  2015)	  
	  Mass	  of	  millisecond	  pulsar:	   	   	   1.667(7)	  M⊙	   	   	   	   (Freire	  et	  al.	  2011)	  
	  Main	  sequence	  star	  companion:	   	   1.029(3)	  M⊙	   	   	   	   (Freire	  et	  al.	  2011)	  

GR	  effects:	  
	  Periastron	  advance:	   	   	   	   4.226598(5)	  deg/yr	  	   	   (Weisberg	  et	  al.	  2010)	  
	  Einstein	  delay:	   	   	   	   	   4.2992(8)	  ms	   	   	   	   (Weisberg	  et	  al.	  2010)	  
	  Orbital	  GW	  damping:	  	   	   	   	   -‐39.384(6)	  μs/yr	   	   	   (Kramer	  et	  al.	  in	  prep.)

3	  ano	  seconds	  uncertainty!

	  0.1	  μs	  uncertainty!
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	  	  Pulse	  period:	  59.0	  ms	  
	  	  Orbital	  period:	  7.75	  h	  	  
	  	  Eccentricity:	  0.617	  
	  	  Companion:	  neutron	  star

PSR	  B1913+16

 58.97 ms

 59.06 ms

[ Hulse & Taylor 1975 ]

The first binary pulsar - 1974

16
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[ Weisberg et al. 2010 ]

‣	  Advance	  of	  periastron	  (GR)	  

Observed	  value:	  	  	  
4.226598 ± 0.000005 deg/yr

‣	  Time	  dilaRon	  (GR)

Observed	  value:	  	  
4.2992 ± 0.0008 ms

‣	  Calculated	  neutron	  star	  masses	  (GR)

m1 = 1.4398± 0.0002M� m2 = 1.3886± 0.0002M�

Two post-Keplerian parameters

17
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[ Weisberg & Huang 2016 ]

[ Peters 1964 ]

1032 WEISBERG, NICE, & TAYLOR Vol. 722

Table 3
Orbital Parameters

Parameter Valuea

T0 (MJD) 52144.90097841(4)
x ≡ a1 sin i (s) 2.341782(3)
e 0.6171334(5)
Pb (d) 0.322997448911(4)
ω0 (deg) 292.54472(6)
⟨ω̇⟩ (deg yr−1) 4.226598(5)
γ (ms) 4.2992(8)
Ṗb −2.423(1) ×10−12

Note.a Figures in parentheses represent estimated uncer-
tainties in the last quoted digit. The estimated uncertain-
ties range from (2–6)× the formal fitted uncertainties, in
order to reflect also the variations resulting from different
assumptions regarding timing noise, etc.

appropriate expressions for ⟨ω̇⟩ and γ are

⟨ω̇⟩ = 3G2/3c−2(Pb2π )−5/3(1 − e2)−1(m1 + m2)2/3

= 2.113323(2)
[

(m1 + m2)
M⊙

]2/3

deg yr−1, (1)

γ = G2/3c−2e(Pb/2π )1/3m2(m1 + 2m2)(m1 + m2)−4/3

= 0.002936679(2)

[
m2(m1 + 2m2)(m1 + m2)−4/3

M
2/3
⊙

]

s.

(2)

In the second line of each equation we have substituted values
for Pb and e from Table 3, and used the constants GM⊙/c3 =
4.925490947 × 10−6 s and 1 Julian yr = 86400 × 365.25 s.
The figures in parentheses represent uncertainties in the last
quoted digit, determined by propagating the uncertainties listed
in Table 3. In each case, the uncertainties are dominated by the
experimental uncertainty in orbital eccentricity, e.

Equation (1) may be solved for the total mass of
the PSR B1913+16 system, yielding M = m1 + m2 =
2.828378±0.000007 M⊙. The additional constraint provided by
Equation (2) permits a solution for each star’s mass individually,
m1 = 1.4398 ± 0.0002 M⊙ and m2 = 1.3886 ± 0.0002 M⊙. As
far as we know, these are the most accurately determined stellar
masses outside the solar system. It is interesting to note that
since the value of Newton’s constant G is known to a fractional
accuracy of only 1 × 10−4, M can be expressed more accurately
in solar masses than in grams.

3.3. Gravitational Radiation Damping

According to general relativity a binary star system should
radiate energy in the form of gravitational waves. Peters &
Matthews (1963) showed that the resulting rate of change in
orbital period should be

Ṗ GR
b = − 192 π G5/3

5 c5

(
Pb

2π

)−5/3 (
1 +

73
24

e2 +
37
96

e4
)

× (1 − e2)−7/2 m1 m2 (m1 + m2)−1/3

= −1.699451(8) × 10−12

[
m1m2(m1 + m2)−1/3

M
5/3
⊙

]

.

(3)

Inserting values obtained for m1 and m2 and propagating
uncertainties appropriately, we obtain the general relativistic

predicted value

Ṗ GR
b = −2.402531 ± 0.000014 × 10−12. (4)

Equations (3) and (4) apply in the orbiting system’s reference
frame. Relative acceleration of that frame with respect to
the solar system barycenter will cause a small additional
contribution to the observed Ṗb. Damour & Taylor (1991)
presented a detailed discussion of this effect and other possible
contributions to Ṗb. Recent progress in determining the galactic-
structure parameters allows us to update the relevant quantities
and compute a new value for the kinematic correction to Ṗb.
Using R0 = 8.4 ± 0.6 kpc for the distance to the galactic center
and Θ0 = 254 ± 16 km s−1 for the circular velocity of the
local standard of rest (Ghez et al. 2008; Gillessen et al. 2009;
Reid et al. 2009), and d = 9.9 ± 3.1 kpc for the pulsar distance
(Weisberg et al. 2008), we obtain the kinematic contribution,
∆Ṗb,gal:

∆Ṗb,gal = −0.027 ± 0.005 × 10−12. (5)

Thus, we find the ratio of the observed-to-predicted rate of
orbital period decay to be

Ṗb − ∆Ṗb,gal

Ṗ GR
b

= 0.997 ± 0.002. (6)

Agreement between the observed orbital decay and the general
relativistic prediction is illustrated in Figure 2, which shows
how excess orbital phase (relative to an unchanging orbit) has
accumulated since the pulsar’s discovery in 1974. We note that
the overall experimental uncertainty embodied in Equation (6)
is now dominated by uncertainties in the galactic parameters
and pulsar distance, not the pulsar timing measurements. Even
better agreement between the observed and expected values
of Ṗb would be obtained if the true value of R0 or d were
slightly smaller, or Θ0 slightly larger. For example, observed
and expected values agree if d = 6.9 kpc, which is within the
Weisberg et al. (2008) error envelope. It will be interesting to
see whether improved future estimates of these quantities will
show one or more of these conditions to be true.

4. OTHER RELATIVISTIC EFFECTS

Two other relativistic phenomena are potentially measurable
in the PSR B1913+16 system: geodetic precession and gravita-
tional propagation delay. Spin–orbit coupling should cause the
pulsar’s spin axis to precess (Damour & Ruffini 1974; Barker
& O’Connell 1975a, 1975b), which should lead to observable
pulse shape changes. Weisberg et al. (1989) first detected such
changes, which were observed and modeled further by Kramer
(1998). Weisberg & Taylor (2002) and Clifton & Weisberg
(2008) found that the pulsar beam is elongated in the latitude
direction and becomes wider in longitude with increasing dis-
tance from the beam axis in latitude. These models suggest that
in the next decade or so, precession may move the beam far
enough that the pulsar will become unobservable from Earth for
some decades, before eventually returning to view.

The excess propagation delay (Shapiro 1964) caused by the
passage of pulsar signals through the curved spacetime of
the companion is largest at the pulsar’s superior conjunction.
The maximum amplitude varies with time because the impact
parameter at superior conjunction strongly depends on the
current value of ω. In this respect, the orbital geometry was
particularly unfavorable in the mid-1990s (see Damour & Taylor

  Gravitational wave damping in the Hulse-Taylor pulsar
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a = �Gm1m2

2E
,

dE

dt
= � G

5c5

*
X

ij

...
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...
Qij

+

0.3%	  (95%	  C.L.)
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Parametrized	  post-‐Keplerian	  formalism	  

For	  a	  wide	  range	  of	  gravity	  theories:	  

K:	  	   	  Keplerian	  parameters	  

PK:	  post-‐Keplerian	  parameters	  
	  	  	  	  	  	  	  (order	  v2/c2	  or	  higher)

!̇, �E, Ṗb, . . .

Pb, e, x, . . .

   The mass-mass diagram for the Hulse-Taylor pulsar

19

!̇

�E

Ṗb
[ Damour 1988, Damour & Taylor 1992 ]

0.3%	  (95%	  C.L.)

☛	  	  talk	  by	  Joel	  Weisberg

pPK
i = fi(p

K;mA,mB)
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[ Burgay et al. 2003, Lyne et al. 2004 ]

McLaughlin et al. 2004

Spin periods:  23 ms / 2.8 s 
Orbital period:  2.45 h 
Eccentricity:         0.088

The Double Pulsar PSR J0737-3039A/B

20

AnimaRon:	  Rene	  Breton

CSIRO
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‣	  Binary	  parameters	  from	  Fming

[ Kramer et al. 2006 ]

‣	  Spin	  precession	  of	  B	  (from	  eclipses)

[ Breton et al. 2008 ]

Timing measurements. For each of the final
profiles, pulse times-of-arrival (TOAs) were com-
puted by correlating the observed pulse profiles
with synthetic noise-free templates (fig. S1)
(14). A total of 131,416 pulse TOAs were mea-
sured for A; 507 TOAs were obtained for B.
For A, the same template was used for all ob-
servations in a given frequency band, but dif-
ferent templates were used for widely separated
bands. We note that our observations still pro-
vide no good evidence for secular evolution of
A’s profile (15) despite the predictions of geo-
detic precession. The best timing precision was
obtained at 820 MHz with the Green Bank
Astronomical Signal Processor (GASP) back
end [see (16) for details of this and other
observing systems] on GBT, with typical TOA

measurement uncertainties for pulsar A of 18 ms
for a 30-s integration.

For B, because of the orbital and secular de-
pendence of its pulse profile (10), different
templates were also used for different orbital
phases and different epochs. A matrix of B
templates was constructed, dividing the data set
into 3-month intervals in epoch and 5-min
intervals in orbital phase. The results for the 29
orbital phase bins were studied, and we noticed
that although the profile changed quickly dur-
ing the two prominent bright phases, the profile
shape was simpler and more stable at orbital
phases when the pulsar is weak. This apparent
stability at some orbital phases cannot be at-
tributed to a low signal-to-noise ratio, as secular
variations in the pulse shape were still evident.

Consequently, the orbital phase was divided
into five groups of different lengths to which
the same template (for a given 3-month interval)
was applied as shown in fig. S2. In the final tim-
ing analysis, data from the two groups repre-
senting the bright phases (IV and V in fig. S2)
were excluded to minimize the systematic errors
caused by the orbital profile changes. Also, be-
cause of signal-to-noise and radio interference
considerations, only data from Parkes and the
GBT BCPM (Berkeley-Caltech Pulsar Machine)
back end (16) were used in the B timing analysis.

All TOAs were transferred to Universal Co-
ordinated Time (UTC) using the Global Posi-
tional System (GPS) to measure offsets of station
clocks from national standards and Circular
T of the Bureau International des Poids et
Mesures (BIPM) to give offsets from UTC,
and then to the nominally uniform BIPM Ter-
restrial Time (TT) time scale. These final TOAs
were analyzed using the standard software pack-
age Tempo (17), fitting parameters according to
the relativistic and theory-independent timing
model of Damour and Deruelle (DD) (11, 18).
In addition to the DD model, we also applied
the ‘‘DD-Shapiro’’ (DDS) model introduced
by Kramer et al. (19). The DDS model is a
modification of the DD model designed for
highly inclined orbits. Rather than fitting for the
Shapiro parameter s, the model uses the param-
eter z

s K jln(1j s), which gives a more reliable
determination of the uncertainties in zs and
hence in s. We quote the final result for the
more commonly used parameter s and note
that its value computed from zs is in good
agreement with the value obtained from a
direct fit for s within the DD model. Derived
pulsar and binary system parameters are listed
in Table 1.

In the timing analysis for pulsar B, we used
an unweighted fit to avoid biasing the fit toward
bright orbital phases. Uncertainties in the timing
parameters were estimated using Monte Carlo
simulations of fake data sets for a range of TOA
uncertainties, ranging from the minimum es-
timated TOA error to its maximum observed
value of about 4 ms. For B, we also fitted for
offsets between data sets derived from different
templates in the fit because the observed profile
changes prevent the establishment of a reliable
phase relationship between the derived tem-
plates. This precludes a coherent fit across the
whole orbit and hence limits the final timing
precision for B. It cannot yet be excluded that
different parts of B’s magnetosphere are active
and responsible for the observed emission at
different orbital phases.

In the final fit, we adopted the astrometric
parameters and the dispersion measure derived
for A and held these fixed during the fit, be-
cause A’s shorter period and more stable profile
give much better timing precision than is achie-
vable for B. Except for the semimajor axis—
which is observable only as the projection onto
the plane of the sky xB 0 (aB/c)sin i, where aB is

Table 1. Parameters for PSR J0737-3039A (A) and PSR J0737-3039B (B). The values were derived
from pulse timing observations using the DD (11) and DDS (19) models of the timing analysis
program Tempo and the Jet Propulsion Laboratory DE405 planetary ephemeris (41). Estimated
uncertainties, given in parentheses after the values, refer to the least significant digit of the
tabulated value and are twice the formal 1s values given by Tempo. The positional parameters are
in the DE405 reference frame, which is close to that of the International Celestial Reference
System. Pulsar spin frequencies n K 1/P are in barycentric dynamical time (TDB) units at the timing
epoch quoted in modified Julian days (MJD). The five Keplerian binary parameters (Pb, e, w, T0, and x)
are derived for pulsar A. The first four of these (with an offset of 180- added to w) and the position
parameters were assumed when fitting for B’s parameters. Five post-Keplerian parameters have
now been measured. An independent fit of ẇw for B yielded a value (shown in square brackets) that
is consistent with the much more precise result for A. The value derived for A was adopted in the
final analysis (16). The dispersion-based distance is based on a model for the interstellar electron
density (26).

Timing parameter PSR J0737-3039A PSR J0737-3039B

Right ascension a 07h37m51s.24927(3) —
Declination d j30-39¶40µ.7195(5) —
Proper motion in the RA direction (mas yearj1) j3.3(4) —
Proper motion in declination (mas yearj1) 2.6(5) —
Parallax p (mas) 3(2) —
Spin frequency n (Hz) 44.054069392744(2) 0.36056035506(1)
Spin frequency derivative ṅn (sj2) j3.4156(1) ! 10j15 j0.116(1) ! 10j15

Timing epoch (MJD) 53,156.0 53,156.0
Dispersion measure DM (cmj3 pc) 48.920(5) —
Orbital period Pb (day) 0.10225156248(5) —
Eccentricity e 0.0877775(9) —
Projected semimajor axis x 0 (a/c)sin i (s) 1.415032(1) 1.5161(16)
Longitude of periastron w (-) 87.0331(8) 87.0331 þ 180.0
Epoch of periastron T0 (MJD) 53,155.9074280(2) —
Advance of periastron ẇw (-/year) 16.89947(68) [16.96(5)]
Gravitational redshift parameter g (ms) 0.3856(26) —
Shapiro delay parameter s 0.99974(j39,þ16) —
Shapiro delay parameter r (ms) 6.21(33) —
Orbital period derivative ṖPb j1.252(17) ! 10j12 —
Timing data span (MJD) 52,760 to 53,736 52,760 to 53,736
Number of time offsets fitted 10 12
RMS timing residual s (ms) 54 2169
Total proper motion (mas yearj1) 4.2(4)
Distance d(DM) (pc) È500
Distance d(p) (pc) 200 to 1,000
Transverse velocity (d 0 500 pc) (km sj1) 10(1)
Orbital inclination angle (-) 88.69(–76,þ50)
Mass function (MR) 0.29096571(87) 0.3579(11)
Mass ratio R 1.0714(11)
Total system mass (MR) 2.58708(16)
Neutron star mass (mR) 1.3381(7) 1.2489(7)
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Timing measurements. For each of the final
profiles, pulse times-of-arrival (TOAs) were com-
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For A, the same template was used for all ob-
servations in a given frequency band, but dif-
ferent templates were used for widely separated
bands. We note that our observations still pro-
vide no good evidence for secular evolution of
A’s profile (15) despite the predictions of geo-
detic precession. The best timing precision was
obtained at 820 MHz with the Green Bank
Astronomical Signal Processor (GASP) back
end [see (16) for details of this and other
observing systems] on GBT, with typical TOA

measurement uncertainties for pulsar A of 18 ms
for a 30-s integration.
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were excluded to minimize the systematic errors
caused by the orbital profile changes. Also, be-
cause of signal-to-noise and radio interference
considerations, only data from Parkes and the
GBT BCPM (Berkeley-Caltech Pulsar Machine)
back end (16) were used in the B timing analysis.

All TOAs were transferred to Universal Co-
ordinated Time (UTC) using the Global Posi-
tional System (GPS) to measure offsets of station
clocks from national standards and Circular
T of the Bureau International des Poids et
Mesures (BIPM) to give offsets from UTC,
and then to the nominally uniform BIPM Ter-
restrial Time (TT) time scale. These final TOAs
were analyzed using the standard software pack-
age Tempo (17), fitting parameters according to
the relativistic and theory-independent timing
model of Damour and Deruelle (DD) (11, 18).
In addition to the DD model, we also applied
the ‘‘DD-Shapiro’’ (DDS) model introduced
by Kramer et al. (19). The DDS model is a
modification of the DD model designed for
highly inclined orbits. Rather than fitting for the
Shapiro parameter s, the model uses the param-
eter z

s K jln(1j s), which gives a more reliable
determination of the uncertainties in zs and
hence in s. We quote the final result for the
more commonly used parameter s and note
that its value computed from zs is in good
agreement with the value obtained from a
direct fit for s within the DD model. Derived
pulsar and binary system parameters are listed
in Table 1.

In the timing analysis for pulsar B, we used
an unweighted fit to avoid biasing the fit toward
bright orbital phases. Uncertainties in the timing
parameters were estimated using Monte Carlo
simulations of fake data sets for a range of TOA
uncertainties, ranging from the minimum es-
timated TOA error to its maximum observed
value of about 4 ms. For B, we also fitted for
offsets between data sets derived from different
templates in the fit because the observed profile
changes prevent the establishment of a reliable
phase relationship between the derived tem-
plates. This precludes a coherent fit across the
whole orbit and hence limits the final timing
precision for B. It cannot yet be excluded that
different parts of B’s magnetosphere are active
and responsible for the observed emission at
different orbital phases.

In the final fit, we adopted the astrometric
parameters and the dispersion measure derived
for A and held these fixed during the fit, be-
cause A’s shorter period and more stable profile
give much better timing precision than is achie-
vable for B. Except for the semimajor axis—
which is observable only as the projection onto
the plane of the sky xB 0 (aB/c)sin i, where aB is

Table 1. Parameters for PSR J0737-3039A (A) and PSR J0737-3039B (B). The values were derived
from pulse timing observations using the DD (11) and DDS (19) models of the timing analysis
program Tempo and the Jet Propulsion Laboratory DE405 planetary ephemeris (41). Estimated
uncertainties, given in parentheses after the values, refer to the least significant digit of the
tabulated value and are twice the formal 1s values given by Tempo. The positional parameters are
in the DE405 reference frame, which is close to that of the International Celestial Reference
System. Pulsar spin frequencies n K 1/P are in barycentric dynamical time (TDB) units at the timing
epoch quoted in modified Julian days (MJD). The five Keplerian binary parameters (Pb, e, w, T0, and x)
are derived for pulsar A. The first four of these (with an offset of 180- added to w) and the position
parameters were assumed when fitting for B’s parameters. Five post-Keplerian parameters have
now been measured. An independent fit of ẇw for B yielded a value (shown in square brackets) that
is consistent with the much more precise result for A. The value derived for A was adopted in the
final analysis (16). The dispersion-based distance is based on a model for the interstellar electron
density (26).

Timing parameter PSR J0737-3039A PSR J0737-3039B

Right ascension a 07h37m51s.24927(3) —
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Spin frequency derivative ṅn (sj2) j3.4156(1) ! 10j15 j0.116(1) ! 10j15

Timing epoch (MJD) 53,156.0 53,156.0
Dispersion measure DM (cmj3 pc) 48.920(5) —
Orbital period Pb (day) 0.10225156248(5) —
Eccentricity e 0.0877775(9) —
Projected semimajor axis x 0 (a/c)sin i (s) 1.415032(1) 1.5161(16)
Longitude of periastron w (-) 87.0331(8) 87.0331 þ 180.0
Epoch of periastron T0 (MJD) 53,155.9074280(2) —
Advance of periastron ẇw (-/year) 16.89947(68) [16.96(5)]
Gravitational redshift parameter g (ms) 0.3856(26) —
Shapiro delay parameter s 0.99974(j39,þ16) —
Shapiro delay parameter r (ms) 6.21(33) —
Orbital period derivative ṖPb j1.252(17) ! 10j12 —
Timing data span (MJD) 52,760 to 53,736 52,760 to 53,736
Number of time offsets fitted 10 12
RMS timing residual s (ms) 54 2169
Total proper motion (mas yearj1) 4.2(4)
Distance d(DM) (pc) È500
Distance d(p) (pc) 200 to 1,000
Transverse velocity (d 0 500 pc) (km sj1) 10(1)
Orbital inclination angle (-) 88.69(–76,þ50)
Mass function (MR) 0.29096571(87) 0.3579(11)
Mass ratio R 1.0714(11)
Total system mass (MR) 2.58708(16)
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➥	  mass	  raRo	  +	  5	  post-‐Keplerian	  parameters

⌦B = 4.77+0.66
�0.65

�/year

➥	  6th	  post-‐Keplerian	  parameter

Relativistic effects in the Double Pulsar
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   Observing the Double Pulsar
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	  ∼	  1.3	  ×	  106	  TOAs	  from	  five	  different	  radio	  telescopes	  
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   The GR mass-mass diagram of the Double Pulsar
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  Norbert Wex / The Many Faces of Neutron Stars / MIAPP / Sep 9th, 2015

The Double Pulsar

GR mass-mass diagram

Mass ratio mA/mB and 

6 post-Keplerian parameters 
➡ periastron precession
➡ time dilation
➡ range (r) and shape (s) of  

Shapiro delay
➡ geodetic precession
➡ gravitational wave damping

➜ 5 tests

PpK = f(PK;mA,mB)

Kramer et al. 2006, Breton et al. 2008

sion rate of WB = 4.77°−0°.65
+0°.66 year−1, we derive

c2sB
G

! "

¼ 3:38þ0:49
−0:46 . Every successful theory of

gravity in the given generic framework must
predict this value: These observations provide a
strong-field test of gravity that complements and
goes beyond the weak-field tests of relativistic
spin precession (26). In GR, we expect to mea-

sure c2sB
G

! "

GR
¼ 2þ 3

2
mA
mB

¼ 3:60677 T 0:00035,

where we have used the masses determined from
the precisely observed orbital precession and the
Shapiro delay shape parameter under the as-
sumption that GR is correct (14). Comparing the
observed value with GR's predictions, we find
c2sB
G

! "

obs
= c2sB

G

! "

GR
¼ 0:94 T 0:13. Hence, GR

passes this test of relativistic spin precession in a
strong-field regime, confirming, within uncertain-
ties, GR's effacement property of gravity even for
spinning bodies, that is, the notion that strong in-
ternal gravitational fields do not prevent a compact
rotating body from behaving just like a spinning
test particle in an external weak field (27).

The spin precession rate, as well as the tim-
ing parameters entering in the calculation of
c2sB
G

! "

, are all independent of the assumed theory

of gravity. If the main contribution limiting the
precision of this new strong-field test comes
from the inferred spin precession rate, we expect
that the statistical uncertainty should decrease
significantly with time, roughly as the square of
the monitoring baseline for similar quantity and
quality of eclipse data. The contribution of sys-
tematics to the error budget should also decrease,
but its functional time dependence is difficult to

estimate. Although the orbital and spin phases of
pulsar B are input variables to the eclipse model,
our ability to determine the orientation of pulsar
B in space does not require the degree of high-
precision timing needed for measurement of post-
Keplerian parameters; evaluating spin phases to
the percent level, for instance, is sufficient. There-
fore, the intrinsic correctness of the model and its
ability to reproduce future changes in the eclipse
profile because of evolution of the geometry
are the most likely limitations to improving the
quality of this test of gravity, at least until the
measured precession rate reaches a precision
comparable with the timing parameters involved

in the calculation of c2sB
G

! "

. Better eclipse mod-

eling could be achieved from more sensitive
observations, and thus new-generation radio
telescopes such as the proposed Square Kilome-
ter Array could help make important progress.
Pulsar A does not show evidence of precession
(28, 29) likely because its spin axis is aligned
with the orbital angular momentum; it should
therefore always remain visible, thus allowing
long-term monitoring of its eclipses. Pulsar B,
however, could disappear if spin precession
causes its radio beam to miss our line of sight
(21). In this event, we would need to find a way
to circumvent the lack of observable spin phases
for pulsar B, which are necessary to the eclipse
fitting.
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Fig. 4. Mass-mass diagram
illustrating the present tests
constraining general rela-
tivity in the double pulsar
system. (Inset) An expanded
view of the region where
the lines intersect. If gen-
eral relativity is the cor-
rect theory of gravity, all
lines should intersect at
common values of masses.
The mass ratio (R = xB/xA)
and five post-Keplerian pa-
rameters (s and r, Shapiro
delay shape and range; ẇ,
periastron advance; Ṗb, or-
bital period decay due to
the emission of gravitation-
al waves; and g, gravita-
tional redshift and time
dilation) were reported in
(14). Shaded orange re-
gions are unphysical solu-
tions because sini ≤ 1,
where i is the orbital in-
clination. In addition to al-
lowing a test of the strong-field parameter ðc2sB

G Þ, the spin precession rate of pulsar B, WB, yields a new
constraint on the mass-mass diagram. M☉ is the mass of the Sun.
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7	  -‐	  2	  =	  5	  tests	  of	  GR

➡New	  version	  by	  Kramer	  et	  al.	  with	  greatly	  improved	  precision	  should	  become	  available	  soon.	  
➡GW	  damping	  in	  the	  Double	  Pulsar	  by	  now	  tested	  with	  a	  precision	  of	  order	  0.02%	  (95%	  C.L.).
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[ Perera et al. 2010 ]

No. 2, 2010 THE EVOLUTION OF PSR J0737−3039B 1195

Figure 1. Pulse profiles of BP1 on 12 different days including the very first observation (MJD 52997). All data have been observed at a frequency of 820 MHz.
Each profile covers 20 minutes of orbital longitude (from 185◦ to 235◦) and there are 256 bins across the entire profile. Since predictions of absolute pulse phase are
not available for these observations, the highest profile peak has been aligned to phase 0.5 at each epoch. The horizontal solid and dotted lines show the baseline, or
off-pulse mean, of the profile and the corresponding standard deviation of the off-peak region, respectively. The effective time resolution of the profiles is 0.01 s

2.◦6(2) yr−1 for BP1 and BP2, respectively. It appears that the
profiles in both bright regions present the same rate of change
in their component separation.

2.2. Flux Evolution of the Two Bright Phases

In both bright regions, the integrated pulse flux density
has decreased gradually over time (see Figures 1 and 2).
The pulsar was detected in both bright phases with the last
significant detection in March 2008 (MJD 54552) at 820 MHz.
We estimated flux densities at 820 MHz using the radiometer
equation. First, we calculated the radiometer noise, using a
system temperature of 35 K (the system temperature is defined
as the sum Tsys = Trec + Tspill + Tatm + Tsky), and considered
this as the flux density at the off-pulse region of the pulse
profile. The flux density is then obtained by multiplying the
pulse profile by the ratio of radiometer noise to the standard
deviation of the off-pulse phase and subtracting the mean off-
pulse level. We have carried out this calculation for only the
two bright phases, because the emission in the weak phases
disappeared much earlier (discussed in Section 2.4 with more
details). The calculated flux densities in both bright phases on
MJD 52997 (0.95(4) and 0.65(4) mJy for BP1 and BP2 at
820 MHz, respectively) are consistent with the value that

has been calculated by Lyne et al. (2004; 0−1.3(3) mJy at
1390 MHz). Figure 7 shows the mean flux densities of different
epochs which have been observed at 820 MHz. This confirms
that the flux density significantly decreases over time and almost
reaches zero around MJD 54852 in both bright phases. The rate
of decrease is calculated to be 0.177(6) and 0.089(7) mJy yr−1

for BP1 and BP2, respectively. The flux densities of the last
few epochs are only upper limits (denoted by arrows) and not
included in the fits. Our timing solution is not stable enough to
provide a reliable prediction of the expected phase of the pulsar
on these days, making it difficult to determine whether any
apparent peaks are real. The peaks on MJDs 54856 and 54852
have the same pulse phase in both bright phases, suggesting
that they are real. However, given their low signal to noise, we
describe them by upper limits.

2.3. Analysis and Comparison of Light Curves of the
Two Bright Phases

The orbital-phase binned light curves of the two bright phases
were obtained by integrating the flux in a window covering 5%
of the spin period and centered on the pulse peak to reduce the
effect of baseline noise. Then, each light curve is smoothed by
using a boxcar with a width of 30 pulses to reduce the significant

[ Ferdman et al. 2013 ]

B
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5.1	  deg/yr
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[ Kramer et al., in prep.; Kehl et al., in prep. ]

!̇ = !̇1pN + !̇2pN + !̇SO

!̇1pN = 16.89 . . . deg/yr

!̇2pN = 0.00044 deg/yr

!̇SO = �0.00038 IA/(1045 g cm2) deg/yr

�!̇obs = 0.00002 deg/yr

PSR J0737-3039
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Bekenstein’s TeVeS and the Double Pulsar
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[ Kramer et al., in prep.; Wex, Esposito-Farèse et al., in prep. ]
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[ Boyles et al. 2013, Lynch et al. 2013, Antoniadis et al. 2013 ] 

P = 39.1226569017806(5)ms

Pb = 2.45817750533(2) h

e . 10�6
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High-resolution optical spectroscopy of the PSR J0348+0432 companion
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Mass of pulsar:

2.01± 0.04M�

[ Antoniadis et al. 2013 ] 

R = mp/mc = 11.70± 0.13 mc = 0.172± 0.003M�

VLT/ESO
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Constraining equations of state at supranuclear densities
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Testing a new gravity regime
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[ Antoniadis et al. 2013 ] 

mc

Ṗb R

Spontaneous	  scalarizaFon	  of	  neutron	  stars	  in	  scalar-‐tensor	  gravity

[ Damour & Esposito-Farèse ] 
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Limits on scalar-tensor gravity from pulsars
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Physical	  (Jordan)	  metric:

[ Damour & Esposito-Farèse 1996 ]

V 00
(') ⌧ 1/(size of system)
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see	  poster	  by	  
Vivek	  Krishnan	  et	  al.	  

allowed region



  Norbert Wex / GR21 / 2016-Jul-11

Triple system pulsar PSR J0337+1715 and the violation of SEP
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[ Ransom et al., 2014 ] 

PSR J0337+1715:  P = 2.7 ms, MPSR = 1.44 M⊙ 
Inner orbit:  1.63 d,  MWD = 0.20 M⊙ 
Outer orbit: 327  d,  MWD = 0.41 M⊙

© T. Tauris
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Triple system pulsar PSR J0337+1715 and the violation of SEP
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[ Ransom et al., 2014 ] 

PSR J0337+1715:  P = 2.7 ms, MPSR = 1.44 M⊙ 
Inner orbit:  1.63 d,  MWD = 0.20 M⊙ 
Outer orbit: 327  d,  MWD = 0.41 M⊙
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Expected limits on scalar-tensor gravity from PSR J0337+1715
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[ Berti et al. 2015, Shao 2016 ]

allowed region
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In search of a pulsar-black hole system
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ESO
© MPE/ESO
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Probing the spacetime of Sgr A*
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Simulation

IllustraRon:	  R.	  Eatough	  /	  MPIfR

Residuals	  caused	  by	  frame	  dragging

[ Psaltis et al. 2016 ]

Event	  Horizon	  Telescope
[ e.g. Doeleman, Proceedings of Science, 2010 ]

MPIfR	  parRcipaRon,	  including

3Fundamental Physics in Radio Astronomy

Three methods, a powerful synergy
● Independent measurements
● EHT shadow + stars/pulsars → 

test near and far gravitational field
● Big collaboration

Probing the Galactic Centre and its super massive black hole

Stars

EHT shadow

Fachbeirat 2016

Credit: MPIfR/N. Wex

Pulsars

Credit: MPIfR/R. Eatough

Credit: MPIfR/N. Wex

Mościbrodzka et al., 2014, A&A, 570, A7

SimulaRon:	  
Dexter	  et	  al.	  2010
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from 35 Hz to a peak amplitude at 450 Hz. The signal-to-
noise ratio (SNR) accumulates equally in the early inspiral
(∼45 cycles from 35 to 100 Hz) and late inspiral to merger
(∼10 cycles from 100 to 450 Hz). This is different from the
more massive GW150914 binary for which only the last 10
cycles, comprising inspiral and merger, dominated the
SNR. As a consequence, the parameters characterizing
GW151226 have different precision than those of
GW150914. The chirp mass [26,45], which controls the
binary’s evolution during the early inspiral, is determined
very precisely. The individual masses, which rely on
information from the late inspiral and merger, are measured
far less precisely.
Figure 1 illustrates that the amplitude of the signal is less

than the level of the detector noise,where themaximum strain
of the signal is 3.4þ0.7

−0.9 × 10−22 and 3.4þ0.8
−0.9 × 10−22 in LIGO

Hanford and Livingston, respectively. The time-frequency
representation of the detector data shows that the signal is not
easily visible. The signal is more apparent in LIGO Hanford
where the SNR is larger. The SNR difference is predomi-
nantly due to the different sensitivities of the detectors at the
time. Only with the accumulated SNR frommatched filtering
does the signal become apparent in both detectors.

III. DETECTORS

The LIGO detectors measure gravitational-wave strain
using two modified Michelson interferometers located in
Hanford, WA and Livingston, LA [2,3,46]. The two
orthogonal arms of each interferometer are 4 km in length,
each with an optical cavity formed by two mirrors acting as
test masses. A passing gravitational wave alters the

FIG. 1. GW151226 observed by the LIGO Hanford (left column) and Livingston (right column) detectors, where times are relative to
December 26, 2015 at 03:38:53.648 UTC. First row: Strain data from the two detectors, where the data are filtered with a 30–600-Hz
bandpass filter to suppress large fluctuations outside this range and band-reject filters to remove strong instrumental spectral lines [46].
Also shown (black) is the best-match template from a nonprecessing spin waveform model reconstructed using a Bayesian analysis [21]
with the same filtering applied. As a result, modulations in the waveform are present due to this conditioning and not due to precession
effects. The thickness of the line indicates the 90% credible region. See Fig. 5 for a reconstruction of the best-match template with no
filtering applied. Second row: The accumulated peak signal-to-noise ratio (SNRp) as a function of time when integrating from the start of
the best-match template, corresponding to a gravitational-wave frequency of 30 Hz, up to its merger time. The total accumulated SNRp

corresponds to the peak in the next row. Third row: Signal-to-noise ratio (SNR) time series produced by time shifting the best-match
template waveform and computing the integrated SNR at each point in time. The peak of the SNR time series gives the merger time of
the best-match template for which the highest overlap with the data is achieved. The single-detector SNRs in LIGO Hanford and
Livingston are 10.5 and 7.9, respectively, primarily because of the detectors’ differing sensitivities. Fourth row: Time-frequency
representation [47] of the strain data around the time of GW151226. In contrast to GW150914 [4], the signal is not easily visible.
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LIGO	  LivingstonLIGO	  Hanford

properties of space-time in the strong-field, high-velocity
regime and confirm predictions of general relativity for the
nonlinear dynamics of highly disturbed black holes.

II. OBSERVATION

On September 14, 2015 at 09:50:45 UTC, the LIGO
Hanford, WA, and Livingston, LA, observatories detected

the coincident signal GW150914 shown in Fig. 1. The initial
detection was made by low-latency searches for generic
gravitational-wave transients [41] and was reported within
three minutes of data acquisition [43]. Subsequently,
matched-filter analyses that use relativistic models of com-
pact binary waveforms [44] recovered GW150914 as the
most significant event from each detector for the observa-
tions reported here. Occurring within the 10-ms intersite

FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right
column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered
with a 35–350 Hz bandpass filter to suppress large fluctuations outside the detectors’ most sensitive frequency band, and band-reject
filters to remove the strong instrumental spectral lines seen in the Fig. 3 spectra. Top row, left: H1 strain. Top row, right: L1 strain.
GW150914 arrived first at L1 and 6.9þ0.5

−0.4 ms later at H1; for a visual comparison, the H1 data are also shown, shifted in time by this
amount and inverted (to account for the detectors’ relative orientations). Second row: Gravitational-wave strain projected onto each
detector in the 35–350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those
recovered from GW150914 [37,38] confirmed to 99.9% by an independent calculation based on [15]. Shaded areas show 90% credible
regions for two independent waveform reconstructions. One (dark gray) models the signal using binary black hole template waveforms
[39]. The other (light gray) does not use an astrophysical model, but instead calculates the strain signal as a linear combination of
sine-Gaussian wavelets [40,41]. These reconstructions have a 94% overlap, as shown in [39]. Third row: Residuals after subtracting the
filtered numerical relativity waveform from the filtered detector time series. Bottom row:A time-frequency representation [42] of the
strain data, showing the signal frequency increasing over time.
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FIG. 1. Left: Amplitude spectral density of the total strain noise of the H1 and L1 detectors,
p

S( f ), in units of strain per
p

Hz, and the
recovered signals of GW150914, GW151226 and LVT151012 plotted so that the relative amplitudes can be related to the SNR of the signal
(as described in the text). Right: Time evolution of the waveforms from when they enter the detectors’ sensitive band at 30 Hz. All bands
show the 90% credible regions of the LIGO Hanford signal reconstructions from a coherent Bayesian analysis using a non-precessing spin
waveform model [45].

The gravitational-wave signal from a BBH merger takes the
form of a chirp, increasing in frequency and amplitude as the
black holes spiral inwards. The amplitude of the signal is
maximum at the merger, after which it decays rapidly as the fi-
nal black hole rings down to equilibrium. In the frequency do-
main, the amplitude decreases with frequency during inspiral,
as the signal spends a greater number of cycles at lower fre-
quencies. This is followed by a slower falloff during merger
and then a steep decrease during the ringdown. The amplitude
of GW150914 is significantly larger than the other two events
and at the time of the merger the gravitational-wave signal
lies well above the noise. GW151226 has lower amplitude but
sweeps across the whole detector’s sensitive band up to nearly
800 Hz. The corresponding time series of the three wave-
forms are plotted in the right panel of Figure 1 to better vi-
sualize the difference in duration within the Advanced LIGO
band: GW150914 lasts only a few cycles while LVT151012
and GW151226 have lower amplitude but last longer.

The analysis presented in this paper includes the total set of
O1 data from September 12, 2015 to January 19, 2016, which
contains a total coincident analysis time of 51.5 days accu-
mulated when both detectors were operating in their normal
state. As described in [13] with regard to the first 16 days
of O1 data, the output data of both detectors typically con-
tain non-stationary and non-Gaussian features, in the form of
transient noise artifacts of varying durations. Longer duration
artifacts, such as non-stationary behavior in the interferom-
eter noise, are not very detrimental to CBC searches as they
occur on a time-scale that is much longer than any CBC wave-

form. However, shorter duration artifacts can pollute the noise
background distribution of CBC searches. Many of these arti-
facts have distinct signatures [48] visible in the auxiliary data
channels from the large number of sensors used to monitor in-
strumental or environmental disturbances at each observatory
site [49]. When a significant noise source is identified, con-
taminated data are removed from the analysis data set. After
applying this data quality process, detailed in [50], the remain-
ing coincident analysis time in O1 is 48.6 days. The analyses
search only stretches of data longer than a minimum duration,
to ensure that the detectors are operating stably. The choice is
different in the two analyses and reduces the available data to
46.1 days for the PyCBC analysis and 48.3 days for the Gst-
LAL analysis.

III. SEARCH RESULTS

Two different, largely independent, analyses have been im-
plemented to search for stellar-mass BBH signals in the data
of O1: PyCBC [2–4] and GstLAL [5–7]. Both these analyses
employ matched filtering [51–59] with waveforms given by
models based on general relativity [8, 9] to search for gravi-
tational waves from binary neutron stars, BBHs, and neutron
star–black hole binaries. In this paper, we focus on the results
of the matched filter search for BBHs. Results of the searches
for binary neutron stars and neutron star–black hole binaries
will be reported elsewhere. These matched-filter searches are
complemented by generic transient searches which are sensi-
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maximum at the merger, after which it decays rapidly as the fi-
nal black hole rings down to equilibrium. In the frequency do-
main, the amplitude decreases with frequency during inspiral,
as the signal spends a greater number of cycles at lower fre-
quencies. This is followed by a slower falloff during merger
and then a steep decrease during the ringdown. The amplitude
of GW150914 is significantly larger than the other two events
and at the time of the merger the gravitational-wave signal
lies well above the noise. GW151226 has lower amplitude but
sweeps across the whole detector’s sensitive band up to nearly
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forms are plotted in the right panel of Figure 1 to better vi-
sualize the difference in duration within the Advanced LIGO
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The analysis presented in this paper includes the total set of
O1 data from September 12, 2015 to January 19, 2016, which
contains a total coincident analysis time of 51.5 days accu-
mulated when both detectors were operating in their normal
state. As described in [13] with regard to the first 16 days
of O1 data, the output data of both detectors typically con-
tain non-stationary and non-Gaussian features, in the form of
transient noise artifacts of varying durations. Longer duration
artifacts, such as non-stationary behavior in the interferom-
eter noise, are not very detrimental to CBC searches as they
occur on a time-scale that is much longer than any CBC wave-

form. However, shorter duration artifacts can pollute the noise
background distribution of CBC searches. Many of these arti-
facts have distinct signatures [48] visible in the auxiliary data
channels from the large number of sensors used to monitor in-
strumental or environmental disturbances at each observatory
site [49]. When a significant noise source is identified, con-
taminated data are removed from the analysis data set. After
applying this data quality process, detailed in [50], the remain-
ing coincident analysis time in O1 is 48.6 days. The analyses
search only stretches of data longer than a minimum duration,
to ensure that the detectors are operating stably. The choice is
different in the two analyses and reduces the available data to
46.1 days for the PyCBC analysis and 48.3 days for the Gst-
LAL analysis.

III. SEARCH RESULTS

Two different, largely independent, analyses have been im-
plemented to search for stellar-mass BBH signals in the data
of O1: PyCBC [2–4] and GstLAL [5–7]. Both these analyses
employ matched filtering [51–59] with waveforms given by
models based on general relativity [8, 9] to search for gravi-
tational waves from binary neutron stars, BBHs, and neutron
star–black hole binaries. In this paper, we focus on the results
of the matched filter search for BBHs. Results of the searches
for binary neutron stars and neutron star–black hole binaries
will be reported elsewhere. These matched-filter searches are
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[	  LIGO	  ScienRfic	  CollaboraRon	  and	  Virgo	  CollaboraRon	  2016	  ]

☛	  	  talk	  by	  Gabriela	  Gonzalez
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20 Hz to fend insp
GW , and we estimate the posterior dis-

tributions of the binary’s component masses and spins
using this “inspiral” (low-frequency) part of the observed
signal, using the nested-sampling algorithm in the
LALINFERENCE software library [52]. We then use for-
mulas obtained from NR simulations to compute posterior
distributions of the remnant’s mass and spin. Next, we
obtain the complementary “postinspiral” (high-frequency)
signal, which is dominated by the contribution from the
merger and ringdown stages, by restricting the frequency-
domain representation of the waveforms to extend between
fend insp
GW and 1024 Hz. Again, we derive the posterior

distributions of the component masses and spins, and
(by way of NR-derived formulas) of the mass and spin
of the final compact object. We note that the MAP wave-
form has an expected SNRdet ∼ 19.5 if we truncate its
frequency-domain representation to have support between
20 and 132 Hz, and ∼16 if we truncate it to have support
between 132 and 1024 Hz. Finally, we compare these two
estimates of the final Mf and dimensionless spin af and
compare them also against the estimate performed using
full inspiral-merger-ringdown waveforms. In all cases, we
average the posteriors obtained with the EOBNR and
IMRPHENOM waveform models, following the procedure
outlined in Ref. [3]. Technical details about the imple-
mentation of this test can be found in Ref. [60].
This test is similar in spirit to the χ2 GW search statistic

[2,61], which divides the model waveform into frequency
bands and checks to see that the SNR accumulates as

expected across those bands. Large matched-filter SNR
values which are accompanied by a large χ2 statistic are very
likely due either to noise glitches or to a mismatch between
the signal and the model matched-filter waveform.
Conversely, reduced-χ2 values near unity indicate that the
data are consistentwithwaveformplus the expected detector
noise. Thus, large χ2 values are a warning that some parts of
the waveform are a much worse fit than others, and thus the
candidates may result from instrument glitches that are very
loud, but they do not resemble binary-inspiral signals.
However, χ2 tests are performed by comparing the data
with a single theoretical waveform, while in this case we
allow the inspiral and postinspiral partial waveforms to
select different physical parameters. Thus, this test should be
sensitive to subtler deviations from the predictions of GR.
In Fig. 4 we summarize our findings. The top panel

shows the posterior distributions of Mf and af estimated
from the inspiral and postinspiral signals, and from the
entire inspiral-merger-ringdown waveform. The plot con-
firms the expected behavior: the inspiral and postinspiral
90% confidence regions (defined by the isoprobability
contours that enclose 90% of the posterior) have a
significant region of overlap. As a sanity check (which,
strictly speaking, is not part of the test of GR that is being
performed), we also produced the 90% confidence region
computed with the full inspiral-merger-ringdown wave-
form; it lies comfortably within this overlap. We have
verified that these conclusions are not affected by the
specific formula [40,59,62] used to predict Mf and af, or
by the choice of fend insp

GW within !50 Hz.

FIG. 2. MAP estimate and 90% credible regions for (upper
panel) the waveform and (lower panel) the GW frequency of
GW150914 as estimated by the LALINFERENCE analysis [3]. The
solid lines in each panel indicate the most-probable waveform
from GW150914 [3] and its GW frequency. We mark with a
vertical line the instantaneous frequency fend insp

GW ¼ 132 Hz,
which is used in the IMR consistency test to delineate the
boundary between the frequency-domain inspiral and postinspiral
parts (see Fig. 3 below for a representation of the most-probable
waveform’s amplitude in frequency domain).

FIG. 3. Frequency regions of the parametrized waveform model
as defined in the text and in Ref. [41]. The plot shows the absolute
value of the frequency-domain amplitude of the most-probable
waveform from GW150914 [3]. The inspiral region (cyan) from
20 to ∼55 Hz corresponds to the early- and late-inspiral regimes.
The intermediate region (red) goes from ∼55 to ∼130 Hz.
Finally, the merger-ringdown region (orange) goes from
∼130 Hz to the end of the waveform.
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90%	  credible	  regions	  for	  the	  waveform	  	  
and	  the	  GW	  frequency	  

GR	  violaFons	  are	  limited	  to	  less	  than	  4%	  
(for	  effects	  that	  cannot	  be	  reabsorbed	  in	  a	  
	  redefiniRon	  parameters)	  

[	  LSC/Virgo	  2016	  ] [	  LSC/Virgo	  2016,	  Kramer	  et	  al.	  in	  prep.	  ]

Tes@ng	  post-‐Newtonian	  correc@ons	  in	  the	  orbital	  
phase	  evolu@on	  due	  to	  GW	  damping

(v2/c2	  correcRons)

Quadrupole	  formula

^

GW150914	  	  (v∼0.4c)
GW151226	  	  (v∼0.4c)
combined

Double	  Pulsar	  (v∼0.002c)

GW150914
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[	  Barausse	  et	  al.	  2013]

dipolar emission (10) by giving the first star a charge close
to the maximum value allowed by the ST theory (!1 !
!max ), and an almost zero scalar charge to the second star
(!2 " 0), the scalar field grows rapidly inside the second
star, which quickly develops a charge !2 " !1 when the
binary becomes sufficiently close (cf. Fig. 2). This shuts off
the dipolar flux (10) but enhances the Newtonian pull (11).
Therefore, the earlier mergers are caused by the combina-
tion of dissipative [Eq. (10)] and conservative [Eq. (11)]
effects. As a qualitative test, we integrated the PN equations
of motion of GR with G replaced by Geff ¼ Gð1þ !1!2Þ
[so as tomimic Eq. (11), with!1,!2 ! 0:2–0:4 set to values
compatible with our simulations] and confirmed that the
enhanced gravitational pull induces quicker mergers.

The growth of the scalar field and charge of nonscalar-
ized stars getting close to scalarized ones can be under-
stood in simple terms. The scalar field extends beyond the
radius of the baryonic matter [11,12]. Indeed, defining an
effective radius L for the scalar as that enclosing a fixed
fraction, e.g., 90%, of its mass, one gets L=RNS ! 4–5 for
isolated stars (cf. also Fig. 2). When the nonscalarized star
enters this scalar ‘‘halo’’ of the scalarized star, it grows a
significant charge. This can be seen by studying isolated
NSs [11,12] and imposing a nonzero asymptotic value ’0

for the scalar field, in order to mimic the effect of the
‘‘external’’ scalar field produced by the other (scalarized)
star. The effect of ’0 is shown in Fig. 3, where we used a
static, spherically symmetric code to calculate the scalar
charge of NSs as a function of the baryonic mass, for a ST
theory with "=ð4#GÞ ¼ '4:5. As can be seen, even mod-
est values of ’0 induce significant scalar charges. This
phenomenon, known as ‘‘induced scalarization’’ [11–13],
has also been observed for boson stars in ST theory [43]
and is similar, energetically, to the magnetization of a

ferromagnetic material in a sufficiently strong magnetic
field [11,12,44]. Here, the external scalar field makes the
configuration with nonzero charge energetically preferred
over the initial noncharged one.
Quite remarkably, the growth of the scalar field inside

stars that are sufficiently close seems quite robust, (though
its magnitude naturally depends on the values of" and’0).
In fact, it happens also in systems where induced scalari-
zation is likely unable to trigger the scalar’s initial growth,
e.g., in (at least) some binaries whose stars are initially
nonscalarized and far from the ‘‘critical mass’’ Mbar "
1:85M(, marking the onset of spontaneous scalarization
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tion of isolated stars occurs when a nonzero value’c of the
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�0 = �4.5

For	  certain	  alternaRves	  to	  GR,	  pulsars	  already	  provide	  
bener	  constraints	  than	  expected	  from	  LIGO/Virgo	  
observaRons	  of	  NS-‐NS	  or	  NS-‐BH	  mergers.

LIGO/Virgo	  observaRons	  of	  NS-‐NS	  mergers	  are	  essenRal	  	  
to	  test	  short	  range	  phenomena,	  like	  dynamical	  scalarizaRon	  	  
(Barausse	  et	  al.	  2013).

Certain	  alternaRves	  to	  GR	  predict	  (significant)	  	  
deviaRons	  only	  for	  BHs,	  e.g.	  	  decoupled	  dynamical	  	  
Gauss-‐Bonnet	  (D2GB)	  gravity	  (see	  Yagi	  et	  al.	  2016).

BH-‐BH	  mergers	  cannot	  test	  deviaRons	  from	  GR	  	  
that	  appear	  only	  in	  the	  presence	  of	  maner,	  	  
e.g.	  JFBD-‐type	  scalar-‐tensor	  gravity
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Millennium Simulation  [ Springel et al. 2005 ]

4 A. Sesana1

signal. It is therefore necessary to monitor an ensemble, or array, of pulsars – which
is the very essence of the concept of pulsar timing array [25] –. Only by observing
a signal that is consistently cross-correlated among them [19] one can be sure of its
GW nature as opposed to some intrinsic random noise process.
In observations with PTAs, radio-pulsars are monitored weekly for periods of

years. The relevant frequency band is therefore between 1/T – where T is the total
observation time – and the Nyquist frequency 1/(2Δ t) – where Δ t is the time be-
tween two adjacent observations –, corresponding to 3× 10−9 Hz - few×10−7 Hz.
The frequency resolution bin is 1/T .

Fig. 1 Illustrative realization of the overall GW signal in the frequency domain; characteristic
amplitude hc vs frequency. Each cyan triangle corresponds to the contribution of an individual
SMBH binary; among these, blue triangles identify bright, resolvable sources. The overall GW
signal is given by the jagged green line, whereas the red thick line represents the unresolved signal
after subtraction of the brightest sources. The solid black line represents the theoretical hc ∝ f−2/3
behavior, and dashed lines mark characteristic residual levels according to the conversion r =
h/(2π f ), as labeled in figure.

[ Sesana 2014 ]
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ABSTRACT
The highly stable spin of neutron stars can be exploited for a variety of (astro)physical investi-
gations. In particular, arrays of pulsars with rotational periods of the order of milliseconds can
be used to detect correlated signals such as those caused by gravitational waves. Three such
‘pulsar timing arrays’ (PTAs) have been set up around the world over the past decades and col-
lectively form the ‘International’ PTA (IPTA). In this paper, we describe the first joint analysis
of the data from the three regional PTAs, i.e. of the first IPTA data set. We describe the avail-
able PTA data, the approach presently followed for its combination and suggest improvements
for future PTA research. Particular attention is paid to subtle details (such as underestimation
of measurement uncertainty and long-period noise) that have often been ignored but which
become important in this unprecedentedly large and inhomogeneous data set. We identify and
describe in detail several factors that complicate IPTA research and provide recommendations
for future pulsar timing efforts. The first IPTA data release presented here (and available on-
line) is used to demonstrate the IPTA’s potential of improving upon gravitational-wave limits
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Figure 2. Atlas for cross-correlation functions C(θ ). The label of each curve indicates the corresponding graviton mass in units of electron volts (eV). The left panel
shows the correlation functions for a 5 year bi-weekly observation. The right panel shows correlation functions for 10 years of bi-weekly observations. We take
α = −2/3 for these results. These correlations are normalized such that C(0) = 0.5 for two different pulsars.

m runs from 1 to the number of pulsar pairs M = (Np −1)Np/2,
because the autocorrelations are not used.

Following Jenet et al. (2005), we define

ρ =
∑M

m=1(C(θm) − C)(c(θm) − c)
√∑M

m=1(C(θm) − C)2
∑M

m=1(c(θm) − c)2
, (21)

where C =
∑M

m=1 C(θm)/M and c =
∑M

m=1 c(θm)/M . Then
the statistic S, describing the significance of the detection, is
S =

√
M ρ. In particular, when there is no GW present, c(θm)

will be Gaussian-like white noise, the probability of getting a
detection significance larger than S is about erfc(S/

√
2)/2 (Jenet

et al. 2005).
Our aim is to determine the ability of a given pulsar timing

array configuration to detect a GW background. To do this,
we calculate the expected value for the detection significance
S by using a second set of Monte Carlo simulations. These
second Monte Carlo simulations are similar to the first ones, but
instead of calculating the average value for C(θ ), we inject white
noise for each pulsar, to represent the intrinsic pulsar noise and
instrumental noise, and we calculate the expected value of S.
We summarize the following steps here.

1. Generate a large number of GW sources (104) to simulate
the required GW background.

2. Calculate the timing residual for each pulsar as described
above and add white Gaussian noise.

3. Calculate the measured correlation c(θm) using
Equation (20) and calculate the detection significance S
using Equation (21).

4. Repeat steps 1–3 and average over the detection signifi-
cance S. The converged S is the value needed to estimate
the detection significance.

The results for the expectation value of S, as a function of GW
amplitude Ac for various pulsar timing array configurations, are
presented in Figure 3. We have also compared simulations from
several different pulsar samples with the same number of pulsars
to make sure such S is not sensitive to the detailed configuration
of the pulsar samples.

Two features of the curves in Figure 3 are worth noting. First,
the minimal detection amplitude of a GW background becomes
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Figure 3. Expected GW background detection significance using a pulsar timing
array with 20 pulsars, observed for 5 years, with 100 ns timing noise. The
graviton mass, in units of electron volts, is labeled above each curve. The x-axis
is the amplitude for the characteristic strain of the GW background (f0 = 1 yr−1,
α = −2/3), while the y-axis is the expected detection significance S.

larger, when a massive graviton is present, i.e., the leading edge
of the S–Ac curve shifts rightwards as mg is made larger. This
tells us that in order to detect a massive GW background, one
needs a stronger GW background signal or a smaller pulsar
intrinsic noise than in the case of a massless GW background.
As previously noted, this effect is mainly due to the reduction
of the pulsar timing response and the reduction of the GW
amplitude at lower frequencies. Figure 3 also tells us when we
can neglect the effect of a massive graviton. It is clear from
Figure 3 that if mg ! 2 × 10−23 eV for a 5 year observation,
the minimal detection amplitude is not reduced by more than
5%. For 10 years of observation, a 5% reduction corresponds to
mg = 10−23 eV.

The second noteworthy feature of the S–Ac curves in Figure 3
is that of the saturation level of detection significance. Due to
the pulsar distance term of Equation (11) (the term involving the
D), the detection significance achieves a saturation level when
the GW-induced timing residuals are much stronger than the
intrinsic pulsar timing noise (Jenet et al. 2005). From Figure 3,
we note that the saturation level of detection significance is large,

the GR and breathing modes, the GW-induced correlation func-
tions can be calculated analytically. For the shear and longitudinal
polarizations, modes that are not purely transverse, the correlation
function must be computed with Monte Carlo simulations.

We consider a distribution of plane GWs in a general metric
theory of gravity. The function hP( f ; êz)df d! denotes the distri-
bution of GWs of polarization P, in the frequency interval df and
in the solid angle d! around the propagation direction êz, such
that the GWmetric perturbation, at a given spacetime point (t; r) is

hab(t; r)

¼
X

P¼þ; ; ;b;sn;se;l

Z 1

#1
df

Z
d! hP f ; êzð Þe2!if (t#r = êz=c)P

ab êzð Þ:

ð1Þ

The polarization index P indicates any of the polarization states
þ, ; , b, sn, se, and l; the ‘‘þ’’ and ‘‘ ; ’’ denote the two different
GR spin-2 transverse traceless polarization modes; the ‘‘sn’’ and
‘‘se’’ denote the two spin-1 shear modes; the ‘‘l’’ and ‘‘b’’ denote
the spin-0 longitudinal mode and the spin-0 breathing mode,
respectively.

In this paper, we apply equation (1) to a stochastic background
of GWs. This stochastic background is a superposition of mono-
chromatic plane wave components with a frequency chosen at ran-
dom from a predetermined spectrum, for our purposes always a
power-law spectrum. The propagation direction of each plane
wave component is chosen at random from an isotropic distri-
bution. For a given planewave component, the polarization tensor
"Pab for the polarization state P depends on the direction of prop-
agation (e.g., it is parallel to the propagation direction for the

TABLE 1

Expansion Coefficients of the Normalized Cross-Correlation Function, #($) ¼ C($)/C(0)

% c0 c1 c2 c3 c4 c5

ck for C sn;se($)

0........................................ 0.0378 #0.0871 0.1928 #0.1086 0.0239 #0.0073

#2/3 ................................. 0.0317 #0.0739 0.1603 #0.0955 0.0289 #0.0121

#1 .................................... 0.0298 #0.0700 0.1511 #0.0917 0.0302 #0.0135

ck for Cl($)

0........................................ 0.0584 #0.1206 0.1386 #0.0908 0.0409 #0.0147

#2/3 ................................. 0.0512 #0.1057 0.1220 #0.0805 0.0373 #0.0156

#1 .................................... 0.0470 #0.0987 0.1148 #0.0785 0.0388 #0.0175

Notes.—We obtain this table using Legendre polynomials, i.e., #($) ¼
PN

k¼0 ckPk (2$/!# 1) with 0 & $ & !. Note
that these expansions are not applicable when $ ¼ 0. The % column indicates the power index of the GW background. By
using these normalized cross-correlation functions, #($), and by calculating C(0) from eq. (A37), the cross-correlation
functions C($) can be found.

Fig. 1.—Normalized pulsar timing residual correlation coefficient, #P ¼ CP($)/CP(0). Here, $ is the angular separation between two pulsars. ‘‘GR’’ stands for the two
transverse traceless modes, ‘‘+’’ and ‘‘;.’’ For the shear and longitudinal modes, the plots are the curves fitted with the expansion coefficients in Table 1, for five years of
observation. Results are given for several values of% , the power-law index of theGWspectrum. The change in # sn;se;l is on the order of 10#2 for a change in% from0 to#1.
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Figure 8: The six polarization modes for gravitational waves permitted in any metric theory of
gravity. Shown is the displacement that each mode induces on a ring of test particles. The wave
propagates in the +z direction. There is no displacement out of the plane of the picture. In (a),
(b), and (c), the wave propagates out of the plane; in (d), (e), and (f), the wave propagates in
the plane. In GR, only (a) and (b) are present; in massless scalar-tensor gravity, (c) may also be
present.
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the plane. In GR, only (a) and (b) are present; in massless scalar-tensor gravity, (c) may also be
present.
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(b), and (c), the wave propagates out of the plane; in (d), (e), and (f), the wave propagates in
the plane. In GR, only (a) and (b) are present; in massless scalar-tensor gravity, (c) may also be
present.
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of the lack of a theory of the graviton, it is important to have
upper limits based on different phenomenological implications
of graviton mass.

The mass limit of Finn & Sutton (2002) is based on the
effect of graviton mass on the generation of GWs, not on their
propagation, but the dispersion relation for propagation is also
an important independent approach to a mass limit, as has been
recently suggested by a number of groups (Will 1998; Larson
& Hiscock 2000; Cutler et al. 2003; Stavridis & Will 2009).
Questions about this method are timely since the detection
of GWs is expected in the near future, thanks to the progress
with present ground-based laser interferometers, possible future
space-based interferometers (Hough & Rowan 2000; Hough
et al. 2005), and pulsar timing array projects (Sallmen et al.
1993; Stappers et al. 2006; Manchester 2006; Hobbs et al.
2009b).

The pulsar timing array is a unique technique to detect
nano-Hertz GWs by timing millisecond pulsars, which are
very stable celestial clocks. It turns out that a stochastic GW
background leaves an angular-dependent correlation in pulsar
timing residuals for widely spaced pulsars (Hellings & Downs
1983; Lee et al. 2008). That is, the correlation C(θ ) between
timing residual of pulsar pairs is a function of angular separation
θ between the pulsars. One can analyze the timing residual and
test such a correlation between pulsar timing residuals to detect
GWs (Jenet et al. 2005). We find in this paper that if the graviton
mass is not zero, the form of C(θ ) is very different from that
given by general relativity. Thus, by measuring this graviton
mass-dependent correlation function, we can also detect the
massive graviton.

The outline of this paper is as follows. The mass of the
graviton is related to the dispersion of GWs in Section 2. The
pulsar timing responses to a plane GW and to a stochastic GW
background in the case of a massive graviton are calculated in
Section 3. The massive graviton induces effects on the shape
of the pulsar timing correlation function, which is derived in
Section 4, while the detectability of a massive GW background is
studied in Section 5. The algorithm to detect a massive graviton
using a pulsar timing array and the sensitivity of that algorithm
are examined in Section 6. We discuss several related issues and
conclude in Section 7.

2. GRAVITATIONAL WAVES WITH
MASSIVE GRAVITONS

We incorporate the massive graviton into the linearized weak
field theory of general relativity (Gupta 1952; Arnowitt & Deser
1959; Weinberg 1972). For linearized GWs, specifying the
graviton mass is equivalent to specifying the GW dispersion
relation that follows from the special relativistic relationship:

E2 = p2c2 + m2c4, (1)

where c is the light velocity, E is energy of the particle, and p
and m are the particle’s momentum and rest mass, respectively.
One can derive the corresponding dispersion relation from
Equation (1) by replacing the momentum by p = h̄kg and the
energy by E = h̄ωg , where h̄ is the reduced Planck constant with
kg and ωg , respectively, the GW wave vector and the angular
frequency. With these replacements, the dispersion relation for
a massive vacuum GW graviton propagating in the z direction
reads

kg(ωg) =
(
ω2

g − ω2
cut

) 1
2

c
êz , (2)

where êz is the unit vector in the z direction. If the GW frequency
ωg is less than the cutoff frequency ωcut ≡ mgc

2/h̄, then
the wave vector becomes imaginary, indicating that the wave
attenuates and does not propagate. (The equivalent phenomena
for electromagnetic waves can be found in Section 87 of Landau
& Lifshitz 1960.)

At a spacetime point (t, r), the spatial metric perturbation due
to a monochromatic GW is

hab(t, r) = ℜ
[

∑

P=+,×
AP ϵP

abe
i[ωgt−r·kg(ωg)]

]

, (3)

where ℜ indicates the real part, and where the a, b range over
spacetime indices from 0 to 3. The summation is performed
over the polarizations of the GW. Since we are not assuming
that general relativity is the theory of gravitation, we could,
in principle, have as many as six polarization states. For
definiteness, however, and to most clearly show how pulsar
timing probes graviton mass, we will confine ourselves in
this paper to only the two standard polarization modes of
general relativity, denoted + and ×, the usual “TT” gauge (see
Appendix A for the details). Thus, the polarization index takes
on only the values P = +,×, with AP and ϵP standing for
the amplitude and polarization tensors for the two transverse
traceless modes.

The polarization tensor ϵP is described in terms of an
orthonormal three-dimensional frame associated with the GW
propagating direction. Let the unit vector in the direction of
GW propagation be êz; we can choose the other two mutually
orthogonal unit vectors êx, êy to be both perpendicular to êz.
In terms of these three vectors, êz, êx , and êy , the polarization
tensors are given as

ϵ+
ab = êxa êxb − êya êyb,

ϵ+
ab = êxa êyb + êya êxb . (4)

Since the polarization tensors are purely spatial, we will
have only spatial components of the metric perturbations. For
a stochastic GW background, these metric perturbations are a
superposition of monochromatic GWs with random phase and
amplitude and can be written as

hij (t, ri) =
∑

P=+,×

∫ ∞

−∞
dfg

∫
dΩ hP (fg, êz) ϵP

ij (êz)ei[ωgt−kg(ωg)·r],

(5)
where fg = ωg/2π is the GW frequency, Ω is solid angle,
spatial indices i, j run from 1 to 3, and hP is the amplitude
of the GW propagating in the direction of êz per unit solid
angle, per unit frequency interval, in polarization state P. If
the GW background is isotropic, stationary, and independently
polarized, we can define the characteristic strain hP

c according
to Maggiore (2000) and Lee et al. (2008), and can write

⟨hP (fg, êz)h⋆P ′
(f ′

g, êz
′)⟩ =

∣∣hP
c

∣∣2

16πfg
δPP ′δ(fg − f ′

g)δ(êz − ê′
z),

(6)
where the ⋆ stands for the complex conjugate and ⟨⟩ is the
statistical ensemble average. The symbol δPP ′ is the Kronecker
delta for polarization states; δPP ′ = 0 when P and P ′ are
different, and δPP ′ = 1 when P and P ′ are the same. With
the relationships above, one can show that

⟨hab(t)hab(t)⟩ =
∑

P=+,×

∫ ∞

0

∣∣hP
c

∣∣2

fg
dfg. (7)1590 LEE ET AL. Vol. 722
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g)δ(êz − ê′
z),

(6)
where the ⋆ stands for the complex conjugate and ⟨⟩ is the
statistical ensemble average. The symbol δPP ′ is the Kronecker
delta for polarization states; δPP ′ = 0 when P and P ′ are
different, and δPP ′ = 1 when P and P ′ are the same. With
the relationships above, one can show that

⟨hab(t)hab(t)⟩ =
∑

P=+,×

∫ ∞

0

∣∣hP
c

∣∣2

fg
dfg. (7)

eV

eV

eV

[ Lee et al. 2008, Lee et al. 2010 ]

[ Will 2014 ]



  Norbert Wex / GR21 / 2016-Jul-11

The Five hundred meter Aperture Spherical Telescope (FAST)

47

FAST, ~2016 Photo/Xinhua
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70 - 500 MHz500 - 1000 MHz

500 - 10000 (22000) MHz

   The Square Kilometre Array (SKA)
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Summary
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Solar	  system	  tests:	  0.001%	  

Binary	  pulsar	  tests	  (quasi-‐staRonary	  and	  radiaRve):	  0.02%	  

Merging	  (stellar-‐mass)	  black	  holes:	  4%	  

Tight	  constraints	  on	  many	  alternaRves	  to	  GR
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