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O U+ i g9, 179, Ux = 0

A natural geometric generalization, N = R" reduces to wave equation
Semilinear hyperbolic 2nd order PDE (exhibits causality)
Satisfies the (strong) null condition

H! data is critical.
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The Cauchy Problem

Let ¥ be the initial Cauchy surface and X be its unit normal, then the
Cauchy problem of wave maps is the following

OgU' + (i, g*%0,095U% = 0 on M

U|z = U (1)
T(U)|z = U
such that
Uo X =N
p — Uo(p)
and
U : ¥ — Ty,N
p— TUo(P)N
for pe %.

Nishanth Gudapati (Yale) 13 July 2016, Columbia



Previous Results in M = R™*1

Many deep, beautiful results.
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Previous Results in M = R™*1

Many deep, beautiful results. Interplay of various fields of mathematics.
Non-exhaustive list here

@ Christodoulou, Shatah, Tahvildar-Zadeh, Tao, Klainerman, Machedon,
Selberg, Rodnianski, Raphael, Tataru, Sterbenz, Struwe, Nahmoud,
Stefanov, Uhlenbeck, Merle, Kenig, Krieger, Schlag, Lawrie etc.
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Critical Einstein-Wave Map System

Previous discussion was on a fixed background M, namely R™+1.
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Critical Einstein-Wave Map System

Previous discussion was on a fixed background M, namely R™*1. Now
consider a more general situation

1
E, :=R, — ERggM,, =aT, (2)
O, U' + " g, 10, Uk = 0 (3)

@ R Ricci tensor, E Einstein tensor of (M, g)

e Dynamical background (M, g)
@ John Wheeler “ Spacetime tells matter how to move; matter tells
spacetime how to curve ”
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Cauchy Problem of Critical Einstein Equivariant Wave Map

System

E., = aT, on M?+1
Ogu = k2fu(ru2)f(u) on M2+l @
U|>: = U

T(U)’z = U
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Cauchy Problem of Critical Einstein Equivariant Wave Map

System

E.
Ugu
Ulg
T(VU)lx
Initial data (X, q, K, Up, U1)
constraint equations.

Nishanth Gudapati (Yale)
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Cauchy Problem of Critical Einstein Equivariant Wave Map

System

E., = aT, on M?+1
Ogu = szu(:;)f(U) on M2+l @
U|>: = U

T(U)’z = U

Initial data (X, g, K, Up, U;) smooth, compactly supported and satisfying
constraint equations. In what follows assume k (homotopy degree) =1
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2+1 EEWM System

In double null-coordinates:

rH(20¢Z¢r — 92r) =0¢u deu (5)
rloz,r :eszzr(zu) (6)
r=1(20,Z0yr — 83r) =0yu Oyu, (7)
—4r2 efzzﬁgnZ :r22 <4e228,,u85u + f2r(2u)> (8)
Hg(uyu Zf“(u,)zf(u)- (9)
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Global Existence for small data

Theorem

Suppose (M, g, U) is the globally hyperbolic, maximal development of the
initial data of the 241 equivariant Einsten-wave map system (¥Xo, qo, Ko)
with Ey < € for e sufficiently small, with

u
/f(s)ds—>oo as u— oo
0

then (M, g, U) is geodesically complete with global regularity.
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Joint with Andersson and Szeftel
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@ Bootstrap assumption: supq, |0¢u| < C, this implies
SUpQ,, rou< C,6 € (0, %)
@ Improve this to § = % using the fundamental solution

@ Apply the operator D : = 0 + % to the wave equation and use the
fundamental solution again to obtain uniform bound for +

o Finally, transform the wave equation to a critical wave equation in
4 + 1 dimensions for v ~ 7

@ Use energy estimates for the wave equation for v to prove global
regularity.

o Global regularity for u follows

Nishanth Gudapati (Yale) 13 July 2016, Columbia 9/12



Scattering

Joint with Dodson.

@ Morawetz esimate 1:

L L < ol + Dl (10)

o Morawetz estimate 2:

Sy < voll . + [|vy ]2 . 11
e <o (ol +Ilie) - )
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Scattering

Joint with Dodson.

@ Morawetz esimate 1:

L s < Dol + (10)
@ Morawetz estimate 2:
[ ams <ol + Inlees) . (D
R J|x|<p
o
Ivilx < Ivollgugasy + i lizgesy + 1 Fllv- (12)

@ Scattering:
[Vl 208@mxRrey < 00
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Concluding remarks

e Stability of Minkowski for polarized case: Huneau (2014, 2015),
based on decay estimates in harmonic coordinates
(Lindblad-Rodnianski, 2004).
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Concluding remarks

e Stability of Minkowski for polarized case: Huneau (2014, 2015),
based on decay estimates in harmonic coordinates
(Lindblad-Rodnianski, 2004).

@ Blow-up profile, soliton solutions
@ Black hole stability problem
@ Super-critical EWM system.
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Thank you, glad to be here
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