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Introduction

In the spatial geometry of LQG as described by spin network states:

<IN

Geometrical observables O are discrete Geometry has quantum fluctuations

Semiclassical states should satisfy:

large
. . scales
Averages form classical geometry (| Oi|la) = O > 8ab
Fluctuations are minimized (0| 0:0;|a) ~ R
Correlations (a|O,0;|a) =7



Introduction

How to recognize semiclassical states in quantum gravity!?

% Fluctuations of geometry as vacuum of QFT in classical background

%+ Long range correlations: (h(x)h(y)) ~ 1/d(x,y)?

How to construct semiclassical states?

% Coherent states and squeezed vacua in loop quantum gravity [1]

In this talk, focus on area-area correlations for homogeneous states in
graphs of cubic structure.

[I] E. Bianchi, . Guglielmon, L. Hackl, NY, arXiv:1605.05356 and PRD92 (2015) 085045



Cubic lattice and spinors

Geometry of a cubic lattice described with spinor variables
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3d vectors from spinors: v(z) = > 08 7'z%, z e C?
For cubic lattice: Z,, =2z,, V(z,)arethe +X directions

+ Spinors have extra information: (z,) determines z up to phase e (framed cube).

The phases will affect holonomies, but not spin fluctuations in the quantum theory.



Bosonic representation of LQG

ole . Bosonic variables: Gﬁ\waﬁ\;&, A=0,l [2]
41
Hilbert space: Hr = Pg P4 ® H)
=1
A0
Gauss constraint Area matching constraint
- . |
Spin-spin correlations:  Cpor = (lelyr) — (lo){ler) , 1o = EcSAB a?Te)afw)
I Coherent states z) = Pg Paexp[Az,'d;]|0)
2. Squeezed vacua v) = Pc Paexp {)\ [”Y(Z)]/(\gu)(ny)a%agl} 0) [3]

[2] F Girelli and E. Livine ’05; L. Freidel and E. Livine [0 and ’| |; Borja et al ’I |
[3] E. Bianchi, J. Guglielmon, L. Hackl, NY, arXiv:1605.05356

5



Correlations for coherent states

Spin-spin correlations in the limit of large spins, j: > |

At each link, after area matching: At each node, after gauge-averaging:
A4 -
z) = Z @Ua Zmu>‘ja Zny) LS, ju) = PG® i Zp)
J ) ) p=I
| 4 A2\ ° | TV
)~ LI B B i ) ~ —(a+3—Ja)" /2
P(j) — ﬁ)\ €eXp )\2 (.’ ) ) PO,Uf) - \/7—_‘_(2)\2)3/2 Ee [4]

Spin fluctuations follow normal distribution peaked at jo = A\?/2 with o; = \/jo/2.
The Gauss projection introduces correlations of fluctuations at distinct links.

Pr({je}) oc | [ exp —% (jg - %) I1 (H e(ia+3ja)2/2/\2>

links 1 nodes

[4] E. Livine and S. Speziale '07



Correlations for coherent states

|. Probability distribution factorizes
over one-dimensional sublattices
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2. Correlations within each sublattice:

]
N
I/
A
]

CR) =Gy = ]§06—2,3R — Correlation length: § = 0.43

(in lattice units)

Similar result holds for heat kernel states, |{H:},t), H;, € SL(2,C) [5]

~ |.44
log 2

R~ +j° i 20 L)) R = <

[5] T.Thiemann ’01; E. Bianchi, E. Magliaro and C. Perini '10
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Correlations in the limit of small spins ¢

A state |¢) € Hr is factorizable if in the loop expansion
) =) caFy[0)
o

the expansion coefficients satisfy: (i) co,1®», = Co,C€s,. Assume that
the amplitudes decay with the length of the loop: (ii) cs < AN°I®I.

— Loop expansion is dominated by contributions from small loops.
Coe, ~0 atorder \2P9»

Coherent states satisfy (i) and (ii), with 3 = 2 . Exponential decay of
correlations in the limit of small spins (= smallX).

[6] E. Bianchi, J. Guglielmon, L. Hackl, NY, arXiv: 1 607.XXXX
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Correlations for squeezed states

Squeezed states: |y) = PgPaexp[A (a'™va")]0), X< |

Choose: W?n%u),(ny) =\ ECDZMZV (Omn + € fmn)

fixes scale factor e < |, encodes
areas peaked along .
correlations

Euclidean directions

Average values of local observables fixed by A and z's. For small spins:

2 A\

=30, (W) =22

7 Cos[2(&i + &)

For £ = 0, the state is factorizable. Correlations are short ranged.



Correlations for squeezed states

For nonzero ¢, we find for the spin-spin correlations:

26

Copr = 3|6>\|682f(e)s(£'

The function f can be chosen to scale with the inverse of the distance,
yielding an inverse square law for the correlations:

Coor < 1/ (ds(ﬁ)s(f’))2

+ The distance d does not refer to a background geometry, but is encoded in the state,
being determined by the diagonal part of the squeezing matrix.

+ In general, states with polynomially decaying correlations on a bosonic lattice satisfy
an area law bound for the entanglement entropy. [Cramer et al '05]
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Conclusion

+ For coherent and heat kernel states, correlations in the
fluctuations of spins on a cubulation decay exponentially with the
distance in the limits of both small and large spins.

% For squeezed states, squeezing matrix can be decomposed into a
diagonal part, which fixes the local geometry (intrinsic and
extrinsic), and an off-diagonal part, which encodes correlations.

< Off-diagonal part can be chosen so that spin-spin correlations decay

as the squared distance, yielding the characteristic decay of equal
time vacuum fluctuations of massless fields in Minkowski spacetime.

<+ Area law for the entanglement entropy.
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