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Why am I doing this?

MC simulations can measure 〈f(g)〉, but what are good f(g)?

Should be
I completly covariant
I space independent
I efficient to measure
I connect to physics?

A few examples
I Phase transitions, Critical exponents (Thermodynamics)
I Transition amplitudes between boundary states
I Spectral properties
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Non commutative geometry

(s,H,A,Γ, J,D)

I Hilbert space
I Algebra
I Dirac operator
I signature
I Chirality
I Real structure
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Non commutative geometry

(s,H,A,Γ, J,D)

I Hilbert space
I Algebra
I Dirac operator
I signature
I Chirality
I Real structure

Classical (1, 3)d geometry
I L2(M, S) the L2 spinors
I Functions C∞(M) : f1(x)

I D = ∂/

I s = (q − p) mod 8 = 2

I “γ5”
I charge conjugation
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Non commutative geometry

(s,H,A,Γ, J,D)

I Hilbert space
I Algebra
I Dirac operator
I signature
I Chirality
I Real structure

Conditions on D
I D = D†

I DΓ = ±ΓD
I DJ = ±JD signs depend

on s

I [[D, ρ(a).], /ρ(b)] = 0 : first
order condition
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Dirac operator : Form

In general

D(v ⊗m) =
∑
i

ωiv ⊗
( left action︷︸︸︷

Kim +ε′

right action︷ ︸︸ ︷
mK∗i

)
For the example of the (3, 1) geometry

D =

3∑
j<k=1

γ0γjγk ⊗ [Ljk, ·] + γ1γ2γ3 ⊗ {H123, ·}

+ γ0 ⊗ {H0, ·}+

3∑
i=1

γi ⊗ [Li, ·]

With H hermitian and L anti-hermitian and traceless
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The action
S = g2Tr

(
D2
)

+ Tr
(
D4
)

What do we want from an action?
I physical motivation ⇒ lowest order when expanding a

heat kernel
I bounded from below ⇒ for some g2, g4
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The action
S = g2Tr

(
D2
)

+ Tr
(
D4
)

How does this look for a given geometry?

(2, 0) geometry

D = γ1 ⊗ {H1, ·}+ γ2 ⊗ {H2, ·}

TrD2 = 4n(TrH2
1 +TrH2

2 ) + 4
(
(TrH1)

2 + (TrH2)
2)

TrD4 = 4n

(
TrH4

1 +TrH4
2 + 4TrH2

1H
2
2 − 2TrH1H2H1H2

)
+ 16

(
TrH1

(
TrH3

1 +TrH2
2H1

)
+TrH2

(
TrH2

1H2 +TrH3
2

)
+ (TrH1H2)

2

)
+ 12

(
(TrH2

1 )
2 + (TrH2

2 )
2

)
+ 8TrH2

1 TrH2
2
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The action
S = g2Tr

(
D2
)

+ Tr
(
D4
)

- 2 -1 1 2
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g2 = {−1,−1.5, · · · ,−4.5,−5}
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The action
S = g2Tr

(
D2
)

+ Tr
(
D4
)
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Scaling with size

average Action
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Scaling with size

average Action
rescaled with N−2
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Spectral dimension/ spectral variance

Pg(t) =
1

V

∑
λ

e−t|λ|

Ds(t) = −t∂ log[Pg(t)]

∂t

Vs(t) = Ds(t)− t
∂Ds(t)

∂t

Return probability?
Only for ∆, for D Partition
function for ensemble w.
energies λ
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Spectral dimension/ spectral variance

Pg(t) =
1

V

∑
λ

e−t|λ|

Ds(t) = −t∂ log[Pg(t)]

∂t

Vs(t) = Ds(t)− t
∂Ds(t)

∂t

Spectral dimension
〈t|λ|〉 in ensemble of
possible e.v. on geometry
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Spectral dimension/ spectral variance

Pg(t) =
1

V

∑
λ

e−t|λ|

Ds(t) = −t∂ log[Pg(t)]

∂t

Vs(t) = Ds(t)− t
∂Ds(t)

∂t

Spectral variance
Variance Var(t|λ|)

6/ 10



Flat space
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v s ( s) w cut -off 1d

ds ( s) w cut -off 1d

both in continuum 1d

v s ( s) w cut -off 2 d

ds ( s) w cut -off 2 d

both in continuum 2 d

v s ( s) w cut -off 4 d

ds ( s) w cut -off 4 d

both in continuum 4 d

Ds and Vs agree with the ontinuum dimension, and go to 0
when a short distance cut off is introduced.

7/ 10



The sphere: S2
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Continuum sphere
Ds goes to infinity when calculated for D, because λmin 6= 0
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Random Geometry

N = 5
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Random Geometry

N = 6

0 2 4 6 8 10
t

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

V
s(

t)

4.00

3.92

3.84

3.76

3.68

3.60

3.52

3.44

3.36

g_
2

9/ 10



Random Geometry

N = 7
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Summary

Results:
I Measure eigenvalues λi
I Interpretation ⇒ spectral dimension
I Geometries change from 1d to 2d
I good agreement with fuzzy S2

Future work:
I Scaling and critical exponents
I ζ-function
I construct more fuzzy spaces

Thanks for listening!
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