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20 years ago...
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Self-force literature 1996-2016*


*ADS summary for papers containing “self-force” in title or abstract (1 July 2016)
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Physical context(s)


This talk:
Gravitational self-force 
in extreme-mass-ratio binaries


Problem of Motion in 
General Relativity


How do “small” objects move 
in curved spacetime?


2-body problem in 
General Relativity


How does a spacetime 
containing two compact objects 
evolve in time?
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Domains of the 2-body problem in GR
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Extreme-Mass-Ratio Inspirals (EMRIs) in Nature


eLISA sensitive to MMBH ∼ 105.5-107.5M� ⇒ mass ratio η ∼ 1 : 104-107.


eLISA sees 10s-1000s(?) EMRIs out to z ∼ a few.


(Torb ∼ hour)� (TRR ∼ Torb/η ∼ yrs)
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EMRIs as probes of strong-field geometry


Assuming central object is a Kerr BH:


Orbit tri-periodic (1 rotation + 2 librations)


Orbit ergodic (space-filling) in general


Principal elements drift in time → radiation


Positional elements drift in time → precession


[movie]


credit: S. Drasco


credit: NASA


Excellent probe of strong-field geometry:


– Precision “black-hole geodesy”
– Tests of GR


Need accurate templates for matched filtering!
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“Capra Programme”


Calculate EMRI orbits and waveforms,
phase-accurate over TRR


Strong field (no resort to PN)


Generic eccentricity, inclination, spins


Accuracy requirement for local self-force:


Φ = Φ0 + Ω∆t + Ω̇∆t2 + . . .


To keep δ(Ω̇∆t2) . 1 over ∆t = TRR


need δ(Ω̇) . T−2
RR = O(η2)


⇒ Second-order self-force


More recent pursuits:


Feed into PN theory


Calibrate EOB potentials


Other applications (cosmic
censorship,. . .)
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“Capra Programme”


participants of the
17th Capra meeting


(Caltech 2014)
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Plan for rest of the talk


Self-force: From foundations to computation
– Derivation of the equation of motion
– Calculation methods


A sample of results:
– radiative evolution
– “post-geodesic” physical effects: ISCO shift, periastron & spin


precession, self-tides, redshift,. . . )
– contact with other approaches
– self-force as a “cosmic censor”


Survey of what the talk did not cover


Summary of progress & outlook
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From Foundations
to Computation


GR21 @ NYC ()Gravitational self-force L. Barack







Problem of motion


FIELD degrees of freedom → PARTICLE degrees of freedom


credit: A. Pound


Guiding principle:
“point particles” don’t make sense as fundamental objects in GR,
but “point particle equation of motion” does — in a certain effective way.
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Matched Asymptotic Expansions


Mino, Sasaki & Tanaka (1997), Poisson (2003)


building on early works by Burke, d’Eath, Kates, Thorne & Hartle,. . .


Trajectory defined on background spacetime using a suitable far-zone limit;
constrained by matching near & far expansions of the metric in the matching zone.


No resort to “point particles”: notion derived rather than assumed


More rigorous derivation by Gralla & Wald (2008) using a 1-parameter metric
family (extending work by Geroch & Ehlers on geodesic motion).
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Equation of Motion at 1st post-geodesic order


Metric perturbation at xµ is a
sum of “direct” and “tail”
contributions:


g full
αβ = g


(0)
αβ + hdirect


αβ + htail
αβ


credit: A. Pound


z̈α = −1


2
(gαβ


(0) + uαuβ) uγuδ
(


2∇(0)
δ htail


βγ −∇
(0)
β htail


γδ


)∣∣∣
z(τ)


=: Fα
self/m
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“R field” reformulation (Detweiler & Whiting 2003)


htail
αβ is not a vacuum solution of the linearized Einstein equations


But one can construct a vacuum solution hR
αβ [associated with a certain (a-causal)


Green function in the Hadamard representation] such that


Fαself = m∇αβγhR
βγ


= m∇αβγ
(
hβγ − hS


βγ


)


full metric g full
αβ “self-field” hS


αβ effective metric g
(0)
αβ + hR


αβ


Interpretation: orbit is a geodesic in the effective metric.


Similar result for extended material objects (Harte 2010),
2nd-order self-force (Pound 2012), non-perturbative (Harte 2012)
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Self-force and gauge


Self-force is gauge-dependent,
but {Fαself , hαβ} contain invariant information


EoM originally formulated in Lorenz gauge, ∇β h̄αβ = 0.


Generalizations:


– Continuous deformations of Lorenz
(LB & Ori 2001)


– Direction-dependent (bounded) deformations of Lorenz
(Gralla & Wald 2008)


– Parity-regular gauges (Gralla 2011)


– Radiation gauges (Pound, Merlin & LB 2014)


Last generalization allows convenient calculation via Teukolsky’s formalism.
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Practical schemes in black-hole spacetimes:
I. Mode-sum method (LB & Ori 2000)


Subtraction of hS
αβ done mode-by-mode in a multipole expansion about large BH:


Fαself(z(τ)) = m
∞∑
`=0


[
(∇αβγhβγ)` − (∇αβγhS


βγ)`
]
x→z(τ)


=
∞∑
`=0


[
m(∇αβγhβγ)`x→z(τ) − Aα(z)`− Bα(z)− Cα(z)/`


]
− Dα(z)


Regularization parameters derived analytically from local form of hS
αβ ; known for


generic orbits in Kerr (LB & Ori 2000-03)


Higher-order parameters improve convergence (Heffernan, Ottewill, Wardell 2012-14)


Numerical input: Modes of hβγ obtained by solving metric perturbation equations
with a particle (delta function) source and retarded boundary conditions.
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Practical schemes in black-hole spacetimes:
II. Puncture (or “effective source”) method


Analytically construct Puncture field hP
αβ ≈ hS


αβ so that ∇hP =∇hS at particle.


Write linearized field equation δGµν(h) = Tµν in “punctured” form


δGµν(h − hP) = Tµν − δGµν(hP) =: Seff
µν


Numerically solve for Residual field hRes := h − hP . Then Fself = m∇hRes


credit: J. Thornburg & B. Wardell


Implementations (2007–) by


– LB, Golbourn, Dolan,
Thornburg,...


– Detweiler, Vega, Diener,
Wardell,...
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Numerical implementation strategies


Time-domain approach


E.g.: Discretize linearized Einstein Field Equation in
Lorenz-gauge on a characteristic grid and evolve in 1+1d.
(LB & Lousto; LB and Sago)


Variants:


– 2+1d in Kerr (Dolan, Wardell & LB)


– finite elements (Canizares & Sopuerta)


– Mesh refinement & compactification (Thornburg)


Frequency-domain approach


In Schwarzschild: solve ODEs for Fourier modes of metric perturbation
(Burko, Detweiler, LB, Warburton, Akcay, Kavanagh, Ottewill, Evans, Hopper,. . .)


In Kerr: Reconstruct metric perturbation from Fourier modes of curvature scalars
(Friedman, Keidl, Shah, van de Meent,. . .)
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A SAMPLE OF RESULTS


GR21 @ NYC ()Gravitational self-force L. Barack







Self-force along fixed geodesic orbits
sample results for equatorial orbits in Kerr (a = 0.5M)
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Maarten van de Meent (2016)
using numerical implementation of Mano-Suzuki-Takasugi method
+ metric reconstruction + mode-sum regularization.
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Self-force along fixed geodesic orbits
sample results for equatorial orbits in Kerr (a = 0.99M)
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Maarten van de Meent (2016)
using numerical implementation of Mano-Suzuki-Takasugi method
+ metric reconstruction + mode-sum regularization.
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Self-force along fixed geodesic orbits
sample results for equatorial orbits in Kerr (a = 0.99M, e = 0.9)
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Thornburg and Wardell (2016)


Scalar-field self-force, using a 2+1d implementation of the puncture method
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Self-forced orbital evolution (in Schwarzschild)
Warburton, Akcay, LB, Gair & Sago (2012); Osburn, Warburton & Evans (2016)


”Instanteneous” geodesic parametrized by {p, e, χ0}:


p =
2r1r2


r2 + r1
, e =


r2 − r1


r2 + r1


r(t; p, e, χ0) =
p


1 + e cos(χ(t)− χ0)


δ


r


r


p
2


1


Method of osculating geodesics (Pound & Poisson 2008)
Inspiral orbit reconstructed as a smooth sequence of tangent geodesics:


p → p(t) :
dp


dt
= terms involving Fself(χ(t); p, e, χ0)


e → e(t) :
de


dt
= · · ·


χ0 → χ0(t) :
dχ0


dt
= · · ·
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Self-forced orbital evolution (in Schwarzschild)
Warburton, Akcay, LB, Gair & Sago (2012); Osburn, Warburton & Evans (2016)


Preparing the self-force data...


0


0.1


0.2


0.3


0.4


0.5


0.6


0.7


0.8


5 10 15 20 25 30 35 40 45 50


e


p


For each p, e write Fself(χ− χ0; p, e) as a Fourier sum of χ− χ0 harmonics.
Then interpolate coefficients over p, e plane.


This approximated self-force, calculated on fixed geodesics, differs by an amount of
O(m3) from the true self-force acting on the evolving orbit .
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Self-forced orbital evolution (in Schwarzschild)
Warburton, Akcay, LB, Gair & Sago (2012); Osburn, Warburton & Evans (2016)
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Self-forced orbital evolution (in Schwarzschild)
Warburton, Akcay, LB, Gair & Sago (2012); Osburn, Warburton & Evans (2016)
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Conservative effects of the self-force


Now “turn off” dissipation:


muβ∇βuα = Fαcons := 1
2


[
Fαself(h


ret) + Fαself(h
adv)


]


Motivation


I Study secular effect of conservative piece on phase evolution


I Clean quantitative description of post-geodesic (finite-mass) effects


I Allows comparison with post-Newtonian predictions


I Strong-field calibration data for EOB potentials
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O(m) shift in the ISCO frequency: Schwarzschild


Restoring force ∼ −mV ′′
eff + Fself


vanishes at risco = 6M + O(m/M).


⇒ Ωisco =


√
M


r3
isco


+ ∆Ωisco


2 4 6 8 10 12 14 16 18 2020
0.86


0.89


0.92


0.95


0.980.98
Effective potential, V


eff


r/M


L
1


Keplerian 
(+rest mass energy)


ISCO


L
c
<L


2


L
2
<L


1


(
∆Ωisco


Ωisco


)
SF


= 0.2513(6) m/M (LB & Sago 2009)


= 0.25101546(5)m/M (Akcay, LB, Damour & Sago 2012)(
∆Ωisco


Ωisco


)
3PN


= 0.434913 . . . m/M
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ISCO shift as an accurate strong-field benchmark


Method cPN
Ω ∆cΩ


A4PN-PA 1.132 -0.0955
A4PN-TA 1.132 -0.0955
C03PN 1.435 0.1467
e2PN-P 1.036 -0.1717
KWW-1PN 1.592 0.2726
A3PN-P 0.9067 -0.2754
A3PN-T 0.9067 -0.2754
A4PN-PB 0.8419 -0.3272
A4PN-TB 0.8419 -0.3272
j3PN-P 1.711 0.3671
j2PN-P 0.6146 -0.5088
KWW-S 0.5610 -0.5515
C02PN 0.5833 -0.5338
Eh3PN 0.4705 -0.6240
e3PN-P 2.178 0.7409
A2PN-P 0.2794 -0.7767
A2PN-T 0.2794 -0.7767
Eh2PN 0.0902 -0.9279
Eh1PN -0.01473 -1.011
Eh-S -0.05471 -1.044
HH-S -0.1486 -1.119
j1PN-P -0.1667 -1.133
KWW-2PN -1.542 -2.232
j-P-S -2.104 -2.682
KWW-3PN 4.851 2.877
HH-1PN 6.062 3.844
HH-2PN -12.75 -11.19
HH-3PN 25.42 19.32


Results from Favata 2010
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O(m) shift in the ISCO frequency: Kerr
(∆


Ω
/


Ω
) S


F


using huu


using GSF
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2m


hαβR,sympαpβ .


Van de Meent (2016)
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O(m) correction to the periastron advance in slightly
eccentric orbits (Damour 2010; LB, Damour & Sago 2010)


δ = 2π


[(
1− 6M


R


)−1/2
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]
+∆δ(R)


δ
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r
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2
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(
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Periastron advance: comparison with full NumRel
(Le Tiec, Mruoe, LB, Buonanno, Pfeiffer & Sago 2011)
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Periastron advance: comparison with full NumRel
(Le Tiec, Mruoe, LB, Buonanno, Pfeiffer & Sago 2011)
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Numerical Relativity simulations can be used to “predict” the O(m) precession effect
where direct self-force results are not yet available. For Kerr: Le Tiec, Buonanno, Mroue,
Pfeiffer, Hemberger, Lovelace, Kidder, Scheel, Szilagyi, Taylor & Teukolsky (2013).
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“Self-torque” and spin precession
(Dolan, Warburton, Harte, Le Tiec, Wardell & LB 2014)


In limit s � m2, spin is parallel-transported along geodesic of g + hR :


uβ∇(R)
β uα = 0, uβ∇(R)


β sα = 0 (Harte 2012)


Circular orbit in Schwarzschild:
Spin undergoes simple precession:


ψ(R) = 1−
√


1− 3M/R + ∆ψ


Precession angle per radian angular
motion


∆ψ × (M/m)


R/M


GR21 @ NYC ()Gravitational self-force L. Barack







“Self-tides”: O(m) contribution to tidal field
Quadrupolar invariants (Dolan et al 2014); Octopolar invariants (Nolan et al 2015)


Circular orbit in Schwarzschild:


Eαγ = Rαβγδu
βuδ tidal field


Bαγ = R∗αβγδu
βuδ frame-drag field


(Rαβγδ corresponding to g + hR)
give 4 ind. invariants (3 eigenvalues
+ 1 angle between eigenbases),
from which other curvature
invariants can be constructed.


E.g., the Kretschmann Scalar


I := CαβγδCαβγδ =
3M2


R6
+ ∆I (R)


∆I/(2I )× (M/m)


R/M
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Detweiler’s redshift
Circular orbits Detweiler (2008); eccentric orbits LB & Sago (2011)


ũt :=
dt


d τ̃
=


(
1− 3M


R


)−1/2


+ ∆ũt(R)


where ũα is 4-velocity in smooth effective metric: (g
(0)
αβ + hR


αβ)ũαũβ = −1


First contact with PN theory
(Detweiler 2008)


Comparison between self-force
calculations in different gauges
(Sago, LB & Detweiler 2008)


∆ũt related to binding energy in
PN theory (Le Tiec et al 2012)


∆ũt related to interaction
Hamiltonian in perturbation
theory (Isoyama et al, in prep.)


∆ũt × (M/m)


Blanchet, Detweiler, Le Tiec
and Whiting (2010)


R/M
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Orbit-averaged redshift


〈ũt〉 =
t period


τ̃ period
= 〈ũt〉0(Ω, ωr ) + ∆〈ũt〉(Ω, ωr )


using rotational and epicyclic frequencies (or {p, e} defined from these frequencies) as
“invariant” orbital parameters


∆〈ũt〉


Results (for Schwarzschild)
from Akcay, Le Tiec, LB, Sago
& Warburton (2015)


Similar results for Kerr:
van de Meent & Shah (2015).
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Post-Newtonian expansion of the self-force


Numerical extraction of
high-order PN parameters
using arbitrary-precision
computer algebra (Shah et al;
Johnson-McDaniel et al
2014-16)


Analytical calculation of
high-order PN parameters
using Mano-Suzuki-Takasugi
method (Bini & Damour;
Kavanagh et al; Hopper et al
2013-2016)


calculation in Kerr through
8.5PN, O(e2) and O(a2):
Bini, Damour and Geralico
(2016)


Table from Bini, Damour and Geralico (2016)
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Self-force and weak cosmic censorship
Can we overspin a Kerr black hole by throwing a small particle into it?


Is it possible to achieve J + mL > (M + mE)2 ?


Wald (1974):
No, if J = M2 and self-force is ignored.


Jacobson & Sotiriou (2009):
Yes, if J = M2 − ε2 and self-force is ignored.


Barausse, Cardoso & Khanna (2010):
Yes, in J = M2 − ε2 case, even if radiation loses are
taken into account!


E , L


M , J


E, L


M, J
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Self-force and weak cosmic censorship
Can we overspin a Kerr black hole by throwing a small particle into it?


Colleoni & LB (2015);
Colleoni, LB, Shah & van de Meent (2015):


No, if full effect of the self-force is taken into
account!


However, by fine-tuning the initial parameters it is
possible to reach extremality
⇒ need higher-order self-force information.


Similar conclusions for problem of overcharging
a Reissner-Nordström black hole
Isoyama, Sago & Tanaka (2011)
Zimmerman, Vega, Poisson & Haas (2013)
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What I have not covered in this talk


Calibration of EOB potentials using self-force data
(Damour 2010, and work by many others since)


The 2nd-order self-force:


– “UV” regularization (Detweiler 2012; Gralla 2012; Pound 2012-14)
– “IR” regularization (Pound 2015-16)
– effect of internal structure (Flanagan and Moxon, preliminary)
– first numerical calculation


(Miller, Pound, Warburton, Wardell & LB — coming soon!)


EMRI as a dynamical system; Hamiltonian formulation
(Vines & Flanagan 2015; Isoyama, Pound, Tanaka et al 2016)


Dynamical effects of resonant crossing
(Flanagan, Hughes & Ruangsri 2014; van de Meent 2014)


Miscellanea: self-force in higher dimensions; dependence on internal structure of
central object; inspiral into extremal black holes; self-force on unbound orbits, . . .
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Summary of progress and an outlook


2004
GR17 @ Dublin


– 1st-order self-force
formulation


– Mode-sum method


– Numerical calculations
with scalar-field toy model
in spherical symmetry


2016
GR21 @ NYC


– Rigorous 1st-order
self-force formulation


– 2st-order self-force
formulation


– Variety of calculation
methods


– Calculations of the grav.
self-force in Kerr


– Extraction of post-
geodesic dynamical effects


– Synergy w/ PN, NR, EOB


2028
GR25 @ ?


– Self-force methods take
center stage alongside
post-Newtonian methods


– Calculations of the grav.
self-force for generic orbits
in Kerr through 2nd order


– Detailed comparisons with
NR simulations inform
universal 2-body model


– EMRI waveform templates
incorporated in eLISA
data analysis pipeline


– Countdown for eLISA
launch! (2029?)
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