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Stochastic lensing


Introduction


Context


Standard cosmology relies (mostly) on distances measured along our


lightcone.


I Some sources are extended: CMB, BAO;


I Some are ’point’ sources (narrow light beam): Supernovæ.


I A simple question: Can we describe all these observations with the


same model?


Well, yes; mostly: Concordance cosmology.


I But for SN, fluid approx. along line-of-sight might be misguided


[Clarkson et al, 2011].


I Small corrections may be important [Fleury et al, 2013] for precision


cosmology.
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Introduction


Aim


Here we propose a new approach to this problem:


I Describe propagation light from point sources using stochastic


description for lenses along the line of sight.


I Coherent description of multi-scale lensing:


I Fluid = average lensing: Smooth lensing


I non-fluid = noise: Clumpiness.


I Effects on distance-redshift relation.
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Cosmological lensing


The Jacobi matrix


Jacobi matrix D relates shape of light beam to its angular shape at


observation.


I ξA: shape of


image.


I Jacobi matrix


(Linearity of


NGDE):


ξA(v) = DA
Bξ


B(0)


Observer v = 0


kµ


v1


v2 > v1


ξA(0)
sA


sA


ξA(v2)


ξA(v1)


Distances: DA =
√


det D and DL = (1 + z)2DA
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Cosmological lensing


The Sachs equation


I Sachs equation:


d2DA
B


dv2
= RA


CDC
B


I Optical tidal matrix RAB = Ra
bcds


a
Ak


bkcsdB :


RAB = RI2 +WAB


I With:


I R = − 1
2
Rabk


akb: Ricci focussing;


I Weyl distortions:


WAB = Ca
bcds


a
Ak


bkcsdB =


 −W1 W2


W2 W1


.
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Stochastic lensing for small sources


The Sachs-Langevin equation


d2D
dv2


= 〈R〉D + δRD


I 〈R〉 = 〈R〉I2: Slow varying: Deterministic;


I δR = δRI2 + W : Rapidly varying: Stochastic noise.


I Statistical homogeneity and isotropy:


〈W〉 = 〈δR(w)WA(v)〉 = 〈W1(w)W2(v)〉 = 0


I White noises:


〈δR(v)δR(w)〉 = CR(v)δ(v − w)


〈WA(v)WB(w)〉 = CW(v)δ(v − w)δAB
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Stochastic lensing for small sources


Fokker-Planck-Kolmogorov equation for the S-L equation


Assuming Noise is a Gaussian white noise:


∂p
(
v,D, Ḋ


)
∂v


= −ḊAB
∂p


∂DAB
− 〈R〉DAB


∂p


∂ḊAB


+
1


2
[CR δAEδCF + CW(δACδEF − εACεEF )]DEBDFD


∂2p


∂ḊAB∂ḊCD


I Boundary condition fixed: p
(


0,D, Ḋ
)


= δ(D)δ
(
Ḋ − I2


)
.


I Full statistical info on lensing: evolution for moments etc.
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Stochastic lensing for small sources


Some analytic results: first order corrections


FPK Eq. can be used to calculate moments of p
(
v,D, Ḋ


)
.


I Expand DA = D0 +D1 and θ = θ0 + θ1 with ’background’:


D̈0 = 〈R〉D0 and θ0 =
Ḋ0


D0
.


I First order corrections to DA (see also [Kantowski, 1969]):


δ
(1)
DA
≡ 〈D1〉


D0
= −2


∫ v


0


dv1
D2


0(v1)


∫ v1


0


dv2
D2


0(v2)


∫ v2


0


dv3 D
4
0(v3)CW(v3) < 0
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Stochastic lensing for small sources


A result on the variance of DA


Pushing to second order, we get:


d3


dx3


[
var [DA]


D2
0


]
+ 2D6


0(2CW − CR)
var [DA]


D2
0


= 2CRD
6
0


+6


∫ x


o


dx′


[
d2δ


(1)
DA


dx2


]2
+O(C3


W).


where D2
0dx = dv.


I Valid at second order in C.


I Both R and W contribute to dispersion of distance.
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An application to a Swiss-Cheese model


Results: Post-Kantowski-Dyer-Roeder corrections


I Application to Swiss-Cheese: Deterministic background is


Dyer-Roeder with ᾱ = 1− limV→+∞
Vholes


V


I First order correction to DA from Weyl focussing (source at z = 1)


(see also [Kantowski, 1969] and [Gunn,1967]).
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An application to a Swiss-Cheese model


Results: Variance of DA


We look at corrections to the variance of DA (source at z = 1):


I For clumpy universes, our estimates are way-off.


I There seems to be a problem here!


I It has to do with Weyl focussing (It is getting worse at ᾱ decreases)
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An application to a Swiss-Cheese model


A limitation: non-Gaussianity


I Use of FPK Eq. relies on Gaussianity of the noise.


I In Brownian motion: Ncol ∼ 1020 s−1 (Central limit theorem).


I But in Cosmo lensing: Nholes ∼ 103 between source and observer. Is


it enough?


I R oscillates between 0 (holes) and RFRW (cheese): compact


support so sum of contributions converges quickly to Gaussian.


I But:


p(|W|) =
2


3Wmin


(
|W|
Wmin


− 1


3


)−2
for Wmin ≤ |W| ≤ Wmax �Wmin


I Long algebraic tail ⇒ slow convergence to central limit.
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Summary and Outlook


Summary


I Stochastic lensing promising new, simple formalism to take into


account effects of clumpiness on cosmo observables.


I Given some partial, statistical info on distribution of matter, one can


infer generic properties of lensed observables (like distances).


I New, post-Dyer-Roeder approximation: shift in DA(z) due to


stochastic noise (clumpiness).


I Issue with central limit theorem for Weyl lensing: Analytical


estimates of variance break down for clumpy universe.


I Numerical integration of Sachs-Langevin Eq. allows one to go


beyond the Gaussian approx.
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Summary and Outlook


What’s next?


I Applying Stochastic lensing to more realistic models (FLRW + Pert:


WIP).


I Extend formalism to include other observables; e.g. redshift (WIP).


I Use of stochastic lensing to avoid time-consuming ray-tracing in


N-body codes.


I Problem of non-Gaussianity.
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Summary and Outlook


THANK YOU!
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