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Stochastic lensing

Introduction

Context

Standard cosmology relies (mostly) on distances measured along our
lightcone.
» Some sources are extended: CMB, BAO;
» Some are 'point’ sources (narrow light beam): Supernovae.
> A simple question: Can we describe all these observations with the
same model?
Well, yes; mostly: Concordance cosmology.
» But for SN, fluid approx. along line-of-sight might be misguided
[Clarkson et al, 2011].
» Small corrections may be important [Fleury et al, 2013] for precision

cosmology.
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Introduction

Aim

Here we propose a new approach to this problem:
» Describe propagation light from point sources using stochastic
description for lenses along the line of sight.
> Coherent description of multi-scale lensing:

> Fluid = average lensing: Smooth lensing

> non-fluid = noise: Clumpiness.

» Effects on distance-redshift relation.
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Cosmological lensing

The Jacobi matrix

Jacobi matrix D relates shape of light beam to its angular shape at

observation.

> ¢4 shape of
image.

» Jacobi matrix
(Linearity of
NGDE):

¢4 (v) = D €8 (0)

Distances: D4 = v/det D and Dy = (1 +2)?D4
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Cosmological lensing

The Sachs equation

» Sachs equation:

2Dy
dv?

=RAcDp

» Optical tidal matrix Rap = R“bcds%kbkcsdB:

Rap =RIz+Was
» With:
» R = —L1R.k"k": Ricci focussing;
> Weyl distortions:
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Stochastic lensing for small sources

The Sachs-Langevin equation

d*D

—3 = (R)D +§RD

v

(R) = (R)I5: Slow varying: Deterministic;

v

0R = 0RI, + VV: Rapidly varying: Stochastic noise.

v

Statistical homogeneity and isotropy:
(W) = ((R(w)Wa(v)) = Wi(w)Wa(v)) =0

White noises:

v

(R(v)dR(w)) = Cr(v)i(v—w)
Wa(v)Wp(w)) Cw()o(v—w)dap
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Stochastic lensing for small sources
:

Fokker-Planck-Kolmogorov equation for the S-L equation

Assuming Noise is a Gaussian white noise:
Op (v, D, 'D)

ov -

: Jp dp
—Dap Dap (R)D

AB SR —
1
+-[Créapdcr + Cw(dacder —cacerr) PDerDPrp

0%p
D apdDcp
» Boundary condition fixed: p (O,’D,’D) =4(D)d <’b — Ig).

» Full statistical info on lensing: evolution for moments etc.
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Stochastic lensing for small sources

Some analytic results: first order corrections

FPK Eq. can be used to calculate moments of p <v,’D,’D).
» Expand Dy = Dy + Dy and 0 = 6y + 01 with "background’:

.. D
D(] = <R>D0 and 90 = =0
Dy’

» First order corrections to D4 (see also [Kantowski, 1969]):

1 _ (D) _ ! dv1 / dvy / 4
5DA = Do = ; D dvs Do(vg)CW(vg) <0
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Stochastic lensing for small sources
:

A result on the variance of Dy

Pushing to second order, we get:

d® [var [Da] var [Da]
2
x d2(5(1)
+6/ dz’ l dng +O(C3,).
where D3dx = dv.

» Valid at second order in C.

» Both R and W contribute to dispersion of distance.
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An application to a Swiss-Cheese model

Results: Post-Kantowski-Dyer-Roeder corrections

85) (%)

Application to Swiss-Cheese: Deterministic background is

Dyer-Roeder with @ =1 — limy 4

\%

holes
\%

First order correction to D4 from Weyl focussing (source at z = 1)

(see also [Kantowski, 1969] and [Gunn,1967]).
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An application to a Swiss-Cheese model

Results: Variance of Dy

We look at corrections to the variance of D4 (source at z = 1):
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» For clumpy universes, our estimates are way-off.
» There seems to be a problem here!

» It has to do with Weyl focussing (It is getting worse at & decreases)
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An application to a Swiss-Cheese model

A limitation: non-Gaussianity

» Use of FPK Eq. relies on Gaussianity of the noise.

» In Brownian motion: N,y ~ 1029 s=! (Central limit theorem).

» But in Cosmo lensing: Npoes ~ 10% between source and observer. Is
it enough?

> R oscillates between 0 (holes) and Rprw (cheese): compact
support so sum of contributions converges quickly to Gaussian.

» But:

2 w1\’
= — — < < .
p(IW)) Y- <Wmin 3> for Winin < [W| < Wiaz > Winin

» Long algebraic tail = slow convergence to central limit.
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Summary and Outlook

Summary

» Stochastic lensing promising new, simple formalism to take into
account effects of clumpiness on cosmo observables.

> Given some partial, statistical info on distribution of matter, one can
infer generic properties of lensed observables (like distances).

> New, post-Dyer-Roeder approximation: shift in D4(z) due to
stochastic noise (clumpiness).

> Issue with central limit theorem for Weyl lensing: Analytical
estimates of variance break down for clumpy universe.

» Numerical integration of Sachs-Langevin Eq. allows one to go

beyond the Gaussian approx.
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Summary and Outlook

What's next?

v

Applying Stochastic lensing to more realistic models (FLRW + Pert:
WIP).

v

Extend formalism to include other observables; e.g. redshift (WIP).

v

Use of stochastic lensing to avoid time-consuming ray-tracing in

N-body codes.

v

Problem of non-Gaussianity.
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