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Creation of a Black Hole (BH)
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Observe the central line

r
=

0

r = 0 singularity i+

J +

i0

J −

v
=

0
EH

EH
A3H

flat

flat

r
=

0

r = 0 singularity i+

J +

i0

J −

v
=

0
EH

A
3H

=
E
H

v
=
v
1

A3H

flat

flat

Schwarzschild



Quasi-local: MTTs ⊃ DHs, A3Hs, NEH, A3Hiso

The case has been made for Marginally Trapped Tubes
(MTTs): hypersurfaces foliated by closed (compact without
boundary) marginally future-trapped surfaces.

If the MTT is spacelike, it is termed dynamical horizon (DH)
(e.g. A Ashtekar and B Krishnan, Living Rev. Relativity 7 (2004), 10)

Intimately related to Future Outer Trapping Horizons (FOTH)
(S Hayward, Phys. Rev. D49 (1994) 6467).
If the MTT is null with null generator along the direction of
vanishing expansion, they are called non-expanding horizons
(NEH)
NEHs include the so-called isolated horizons as well as the
Killing horizons
Of course, the MTT of a realistic dynamical black hole can be
composed of several portions of each of these kinds!
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Example: The Oppenheimer-Snyder Black Hole
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Case with a portion of Isolated Horizon A3H(iso)
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Problem with MTTs and DHs: non-uniqueness

Actually, MTTs satisfy laws of classical mechanics and
thermodynamics similar to those of EH. In particular, their
area (→ entropy) grows during the collapse, and decreases
with Hawking radiation.

Unfortunately, they have an important problem: they are
highly non-unique
(A Ashtekar and G Galloway, Adv. Theor. Math. Phys. 9 (2005) 1-30)
This manifests itself because the 2D Apparent Horizons
depend on the choice of a reference foliation of spacelike
hypersurfaces.
Therefore, it would be very welcomed to have a physically
sound criterion selecting a preferred MTT.
So far, all tries have failed or been inconclusive (evolution
maximizing entropy (Gourgoulhon & Jaramillo, Phys.Rev. D74 (2006) 087502),
cores (Bengtsson & Senovilla, Phys.Rev.D83 (2011) 044012) ,...)
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Surfaces

S denotes a spacelike surface embedded in a spacetime (with
metric tensor g of signature (−,+,+,+)) and γAB denotes its
first fundamental form (A,B, . . . are indices within S)

The two future-pointing and null normal vector fields are
denoted by ~k± (and we add a normalization condition
k+µk

µ
− = −1)

there remains the freedom

~k+ −→ ~k′+ = σ2~k, ~k− −→ ~k′− = σ−2~k−

The shape tensor (or second fundamental form vector) is

~KAB = −KAB(~k−) ~k+ −KAB(~k+) ~k−

where KAB(~k±) are the second fundamental forms along the
null normals.
Observe that KAB(~k±) are affected by the gauge freedom
above, but not so ~KAB.
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Mean curvature vector. Null expansions

The mean curvature vector and null expansions:

~H ≡ γAB ~KAB = −θ−~k+ − θ+ ~k−

θ± := γABKAB(~k±) are called the future null expansions

Future-trapped surfaces are characterized by the causal orientation
of its mean curvature vector:

~H Expansions Type of surface
future timelike θ+ < 0, θ− < 0 f-trapped
future causal θ+ ≤ 0, θ− ≤ 0 weakly f-trapped
future null θ+ = 0, θ− ≤ 0 marginally f-trapped

null θ+ = 0 marginally outer trapped
zero θ+ = θ− = 0 stationary or minimal
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Shear scalars along null normals

The classical shear scalars along ~k± are given, at the surface
S, by

(σ±)2 :=

(
KAB(~k±)− 1

2
θ±γAB

)(
KAB(~k±)− 1

2
θ±γAB

)

A normal null direction (say ~k+) is called shear-free at S if the
corresponding shear scalar vanishes: σ+ = 0.
This is equivalent to the vanishing of the entire “shear
operator”:

KAB(~k+)− 1

2
θ+γAB = 0

Equivalently, this states that the (+) null second fundamental
form is proportional to the first fundamental form. In
mathematics this property characterizes surfaces umbilical
along ~k+.
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Shear-free surfaces

Of course, a surface S can be umbilical not only along null
normal directions, but along any normal direction ~n

The condition is that the corresponding second fundamental
form be proportional to γAB.

Definition (Shear-free surfaces)

A spacelike surface is said to be shear-free along a normal direction
~n if and only if the following condition holds

nµK
µ
AB =

1

2
θnγAB

Remark: Observe that ~n can have any causal character (and
even change causal character from point to point).
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Characterization of shear-free surfaces

Theorem
The necessary and sufficient condition for a surface S to be
shear-free along a normal direction is that the two null second
fundamental forms commute:

KA
C(~k+)KC

B(~k−) = KA
C(~k−)KC

B(~k+)

(Senovilla, Springer Proc. in Mathematics, 26 (2013) 87 (arXiv:1111.6910))

This implies that all second fundamental forms commute
—and can be simultaneously diagonalized
It also provides a simple criterion to know when a surface S is
shear-free or not.
The shear-free direction ~n is determined as the unique normal
direction orthogonal to ~KAB − 1

2
~HγAB

(unless this object vanishes, which corresponds to totally
umbilical surfaces, i.e., surfaces that are shear-free along all
normal directions).



Characterization of shear-free surfaces

Theorem
The necessary and sufficient condition for a surface S to be
shear-free along a normal direction is that the two null second
fundamental forms commute:

KA
C(~k+)KC

B(~k−) = KA
C(~k−)KC

B(~k+)

(Senovilla, Springer Proc. in Mathematics, 26 (2013) 87 (arXiv:1111.6910))
This implies that all second fundamental forms commute
—and can be simultaneously diagonalized

It also provides a simple criterion to know when a surface S is
shear-free or not.
The shear-free direction ~n is determined as the unique normal
direction orthogonal to ~KAB − 1

2
~HγAB

(unless this object vanishes, which corresponds to totally
umbilical surfaces, i.e., surfaces that are shear-free along all
normal directions).



Characterization of shear-free surfaces

Theorem
The necessary and sufficient condition for a surface S to be
shear-free along a normal direction is that the two null second
fundamental forms commute:

KA
C(~k+)KC

B(~k−) = KA
C(~k−)KC

B(~k+)

(Senovilla, Springer Proc. in Mathematics, 26 (2013) 87 (arXiv:1111.6910))
This implies that all second fundamental forms commute
—and can be simultaneously diagonalized
It also provides a simple criterion to know when a surface S is
shear-free or not.

The shear-free direction ~n is determined as the unique normal
direction orthogonal to ~KAB − 1

2
~HγAB

(unless this object vanishes, which corresponds to totally
umbilical surfaces, i.e., surfaces that are shear-free along all
normal directions).



Characterization of shear-free surfaces

Theorem
The necessary and sufficient condition for a surface S to be
shear-free along a normal direction is that the two null second
fundamental forms commute:

KA
C(~k+)KC

B(~k−) = KA
C(~k−)KC

B(~k+)

(Senovilla, Springer Proc. in Mathematics, 26 (2013) 87 (arXiv:1111.6910))
This implies that all second fundamental forms commute
—and can be simultaneously diagonalized
It also provides a simple criterion to know when a surface S is
shear-free or not.
The shear-free direction ~n is determined as the unique normal
direction orthogonal to ~KAB − 1

2
~HγAB

(unless this object vanishes, which corresponds to totally
umbilical surfaces, i.e., surfaces that are shear-free along all
normal directions).



Characterization of shear-free surfaces

Theorem
The necessary and sufficient condition for a surface S to be
shear-free along a normal direction is that the two null second
fundamental forms commute:

KA
C(~k+)KC

B(~k−) = KA
C(~k−)KC

B(~k+)

(Senovilla, Springer Proc. in Mathematics, 26 (2013) 87 (arXiv:1111.6910))
This implies that all second fundamental forms commute
—and can be simultaneously diagonalized
It also provides a simple criterion to know when a surface S is
shear-free or not.
The shear-free direction ~n is determined as the unique normal
direction orthogonal to ~KAB − 1

2
~HγAB

(unless this object vanishes, which corresponds to totally
umbilical surfaces, i.e., surfaces that are shear-free along all
normal directions).



The shear-free direction

For shear-free surfaces, the shape tensor takes the form

~KAB = FAB ~G+
1

2
~HγAB

Here FAB = FBA is symmetric and trace-free: FBB = 0,
and is chosen to satisfy a normalization condition:
FABF

AB = 1.
On the other hand, ~G = FAB ~KAB can be seen to equal

~G = −σ+~k− − σ−~k+

Notice that the shear-free direction is given by

~n = ?~G := σ+~k− − σ−~k+

(if it exists!)
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The new proposal

I propose to use this shear-less condition as a criterion to
select a preferred MTT:

Definition (Endo-shear-free Marginally Trapped Tubes)

An endo-shear-free marginally trapped tube is a hypersurface
foliated by shear-free marginally trapped surfaces.

Endo-shear-free dynamical horizons if they happen to be
spacelike.
It must be remarked that different foliating marginally trapped
surfaces can be shear-free with respect to “different” directions.
From now on I will use ESF-MTT
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Supporting facts

The new proposal is supported by several simple observations

First of all, in spherically symmetric spacetimes, the round
spheres are totally umbilical, and thus the (unique!) spherically
symmetric MTT satisfies the criterion.
Similarly, take the Szekeres metrics

ds2 = −dt2 + F 2dr2 +G2dΩ2
ε

where dΩ2
ε is the metric of a surface with constant curvature

ε = ±1, 0, and F and G depend on all 4 coordinates.
The surfaces defined by constant values of t and r are totally
umbilical again. There is then a hypersurface, defined by

FG,t = Gr

which an ESF-MTT. This coincides with the canonical horizon
usually studied in these metics.
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Supporting facts (continued)

Consider now Robinson-Trautman metrics

ds2 = −Fdu2 − 2dudr +
r2

P 2
dΩ2

ε

with dΩ2
ε as above, F is an arbitrary function and P is a

function independent of r.

The surfaces defined by constant values of u and r are
shear-free along the normal direction ∂r.
Thus, the usual horizon analyzed in these spacetimes —which
is foliated by such surfaces— is in all cases an ESF-MTT.
Of course, this example may seem trivial, because the
spacetime is by definition Petrov type II, and the repeated
principal null direction is given by ∂r and is by assumption
rotation- and shear-free.
(Even more so in the previous examples...)
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More supporting facts: Kerr

As a non-trivial example consider the Kerr spacetime, given in
Kerr coordinates by

−
(

1− 2mr

ρ2

)
dv2 + 2dvdr + ρ2dθ2 − 4amr sin2 θ

ρ2
dvdϕ

−2a sin2 θdrdϕ+
(r2 + a2)2 − a2∆ sin2 θ

ρ2
sin2 θdϕ2

The notation is standard, with ρ2 = r2 + a2 cos2 θ,
∆ = r2 − 2mr + a2 and m and a two constants.
This spacetime is Petrov type D, thus with two shear-free
principal null directions... However, they are not irrotational,
and thus they are not orthogonal to surfaces!
We consider the preferred surfaces defined by constant values
of v and r (these are topological spheres). When are they
shear-free?
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Shear-free surfaces in Kerr spacetime

Result (Shear-free surfaces in Kerr)

In the Kerr spacetime with a 6= 0, the only shear-free surfaces
defined by constant values of v and r are those sitting on either

1 the (timelike) hypersurface r = 0 or
2 the (null) hypersurface ∆ = 0 —these exist only when m ≥ |a|

(Cipriani-Senovilla-Van der Veken , arXiv:1604.06375)

1 In the first case the surfaces are non compact (topological
disks), they are untrapped, and they happen to be locally flat.
(No interest here)

2 The two connected components of the second case define the
Cauchy horizon (r = r−) and the Event horizon (r = r+) of
the Kerr black hole, and the foliating surfaces are marginally
trapped.
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Non-expanding horizons

The above is just an instance of a more general case.

Non-expanding horizons (including isolated and Killing
horizons) are null hypersurfaces with a shear-free and
expansion-free null generator
Any cut of such a null hypersurface will thus be a shear-free
surface
Thus, all NEH are in particular ESF-MTT
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A tougher test: Gowdy spacetimes

Consider Gowdy-like spacetimes, given in local coordinates by

L−2ds2 = e2a
(
−dt2 + dψ2

)
+ 2 (Mdθ +Ndϕ) dt

+G
[
ep (dθ +Wdϕ)2 + e−pdϕ2

]

Here, the hypersurfaces t =const. are assumed to be closed,
and therefore the coordinates ψ, θ, ϕ are angular coordinates.
The level hypersurfaces can describe several topologies, such
as S1 × S1 × S1, or S2 × S1, or S3.
∂θ and ∂ϕ are commuting Killing vectors, so that the functions
a,M,N,G, p depend only on t and ψ.
For simplicity, we concentrate on the surfaces of transitivity of
the G2 group of motions, given by constant values of t and ψ.
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ESF-MTTs in Gowdy spacetimes

The surfaces of transitivity are marginally trapped if and only if

e4aG2G2
,t + det(g)G2

,ψ = 0

Here det(g) = e2aG
[
e2aG+ e−pM2 + ep(WM −N)2

]
A straightforward, somewhat long, computation informs us
that these transitivity surfaces are shear-free if, on them

dp ∧ dW |S = 0

In other words, on S we must have (p,tW,ψ − p,ψW t)|S = 0.
It must be stressed that the shear-free condition does not
depend on G.
On the other hand, the condition for a MTT depends crucially
on G —and actually only on G if the group is orthogonally
transitive (M = N = 0).
The existence of ESF-MTTs is easily checked: one trivial
example is the case with orthogonal Killing vectors, W = 0.
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Are ESF-MTTs the solution?

To check whether or not this proposal is sound there are two
different levels

The first level arises if one assumes that there exists a
shear-free MTS in the spacetime
Due to known results, we know that if this MTS is (strictly)
stable it belongs to many MTTs (DHs) containing it
Then one can use variation methods: deform the surface along
normal directions and see if one can keep the shear-free
property along (at least) one of those MTTs
The second level is much more difficult and ambitious –and yet
unexplored.
Starting from a MTS S, it consists in trying to prove that at
least some of the MTTs containing S will eventually develop a
shear-free MTS.
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Deforming shear-free MTS

Take a marginally trapped S (so that θ+ = 0) and assume
that it is shear-free. As explained above, this means that[

K(~k+),K(~k−)
]

= 0

Now, deform S along a normal direction given by
~ξ = −ξ+~k− − ξ−~k+, with ξ± smooth functions on S
The variation of the second fundamental forms is given by

δ~ξKAB(~k±)∓ κ~ξKAB(~k±) = −∇A∇Bξ± ± 2s(A∇B)ξ
±

−ξ∓
(
KAC(~k±)KB

C(~k±)− 1

2
γABR

µνk±µ k
±
ν − Cµνρσk±µ k±ρ eνAeσB

)
+ξ±

(
R

2
γAB +

1

2
HµK

µ
AB − 2KC(A(~k+)KB)

C(~k−)

± ∇(AsB) − sAsB −
1

2
Rµνe

µ
Ae

ν
B

)
Here sA := k+µ e

ν
A∇νk−µ is the normal connection one-form.
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Given that the initial S is assumed to be shear-free, this
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Deforming shear-free MTS keeping zero expansion

But before we saw that a shear-free surface has
KAB(~k+) = σ+FAB and KAB(~k−) = σ−FAB + (θ−/2)γAB

Thus, the condition becomes simply[
F , σ+δK− − σ−δK+

]
= 0

This is just one condition on the symmetric matrix
σ+δK−AB − σ−δK

+
AB.

Of course, we must also keep a vanishing expansion after
deformation, i.e. δ~ξ θ

+ = 0. This requires

−∆ξ+ + 2sB∇Bξ+ + ξ+
(
R

2
+∇BsB − sBsB −Gµνk+µ k−ν

)
+ξ−

(
σ2+ +Rµνk+µ k

+
ν

)
= 0

Observe that one can isolate ξ− from the last expression, and
then, the other condition becomes a single equation for the
remaining unknown ξ+.
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