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✦ Gravity in Anti-de Sitter (AdS) has become a central theme.
Especially after the AdS/CFT correspondence was put forward.


✦ And has found applications in several realms: 


heavy ion collisions;  quark-gluon plasma;  fluid dynamics;  holographic superconductors;  …


Introduction: Gravity in confined spaces


✦ But the subject of gravity in confined spaces has intrinsic interest.


Even in the context of four-dimensional classical gravity.
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Introduction: Gravity in confined spaces


✦ More motivation:  the turbulent instability of AdS.


✦ AdS is a fancy box.


✦ Arbitrarily (?) small perturbations of AdS typically (?) collapse after a sufficiently 
large number of reflections.
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✦ A useful idealisation that allows to treat a class of interesting problems exactly 
is the consideration of infinitely thin matter shells.
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Introduction: Thin shells


✦ A useful idealisation that allows to treat a class of interesting problems exactly 
is the consideration of infinitely thin matter shells.


✦ These can be obtained by gluing two given 
spacetimes along some hypersurface, which 
determines the location of the shell.


[Israel (1966)]
[Darmois (1927)]


✦ Note:  the thin shell may be dynamical even if the two spacetimes matched
are static.
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Introduction: Goal & Problem


✦ We aim at studying the gravitational dynamics of matter in confined spaces in 
the simplest possible setup:


— 2 spherical thin shells, concentric
— interacting only gravitationally
— inside a reflecting box, or in AdS


This basic setting displays astonishingly rich dynamics and 
provides easily tractable time evolution.
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Introduction: Earlier literature


✦ Previous studies with relativistic multiple-shells systems:


[Dray, ’t Hooft (1985)] [Redmount (1985)]— collision of two null shells


[Núñez, Oliveira, Salim (1993)]
[Ida, Nakao (1999)] [Nakao, Ida, Sugiura (1999)]


— collision of two timelike shells
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Introduction: Earlier literature


✦ Previous studies with relativistic multiple-shells systems:


Crucial difference:  absence of a confining mechanism


[Dray, ’t Hooft (1985)] [Redmount (1985)]— collision of two null shells


[Núñez, Oliveira, Salim (1993)]
[Ida, Nakao (1999)] [Nakao, Ida, Sugiura (1999)]


— collision of two timelike shells


[Eid, Langer (2000)]— long term evolution of two shells


[Gáspár, Rácz (2011)]— long term evolution of multiple shells
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Dynamics of a spherical shell: Details of the setup


✦ For a single spherical shell:  inner and outer geometries 
are both Schwarzschild-AdS. M-


M+


Some equations used for talks on confined double-shells systems


Jorge V. Rocha


Just some equations to use in talks


I. INTRODUCTION


We highlight the fact that the dynamics of such sys-
tems require only solving two decoupled ODEs.


II. THE DOUBLE-SHELL SYSTEM


A. Evolving shells individually


The time evolution of each shell can be followed in-
dividually up to the point that the two shells collide1.
The interior and exterior spacetimes are determined by
Birkho↵’s theorem to be described by AdS-Schwarzschild
spacetimes,


ds2 = �f(r)dt2 + f(r)�1dr2 + r2d⌦2 , (1)


f(r) =


✓
1� 2M


r


◆
. (2)


f(r) =


✓
1� 2M


r
+


r2


l2


◆
(3)


Here, l is the (constant) AdS curvature. Once this is
fixed, the only input needed is the gravitational mass of
the interior and exterior regions. The induced metric on
a shell of radius r = R(⌧) is then


d�2 = �d⌧2 +R(⌧)2d⌦2 , (4)


where ⌧ denotes the shell’s proper time and d⌦2 is the
line element on the unit two-sphere. We shall denote
derivatives with respect to ⌧ by an overdot.


The non-vanishing components of the extrinsic curva-
ture are straightforwardly computed,


K±
⌧⌧ = � �̇±


Ṙ
, K±


✓✓ = R�± = K±
��/ sin


2 ✓ , (5)


�± ⌘
q
Ṙ2 + f±(R) , (6)


where ± applies to exterior and interior quantities, re-
spectively.


Applying the Israel-Darmois junction conditions, a dis-
continuity of the extrinsic curvature signals the presence
of a non vanishing stress-energy tensor on the hypersur-
face given by


Sij = �(8⇡G)�1 ([Kij ]� gij [K]) , (7)


1
At such events we will have to make a choice for the subsequent


evolution and this will be discussed below.


where [X] ⌘ X+ �X� denotes the jump of any quantity
X across the shell’s surface and K± = �̇+/Ṙ+2�±/R is
the trace of the extrinsic curvature.
We take the matter on the shell to be described by a


perfect fluid,


Sij = (⇢+ P )uiuj + Pgij , (8)


where ui = �⌧i represents the fluid’s 3�velocity, ⇢ its
energy density and P its pressure. By equating (6) to (7)
we thus find


⇢ = � 1


4⇡GR
[�] , P =


1


8⇡G


✓
d[�]


dR
+


[�]


R


◆
. (9)


To close the system one must provide an equation of
state relating the fluid’s energy density and pressure. We
adopt, for simplicity, a linear equation of state P = w⇢,
with w a constant. Consequently, integration of (8)
yields


⇢ =
ml2w


4⇡GR2+2w
, (10)


with m a constant, corresponding to the shell’s invariant
mass and G denoting Newton’s constant. The inclusion
of the factor l2w is a matter of convenience, preserving
the mass dimension of m for any choice of equation of
state parameter w.
Inserting the above solution in Eq. (8) one can obtain


— after some massaging — a neat expression for the ex-
terior gravitational mass, which for the pressureless case
(w = 0) reduces to a sum of the interior gravitational
mass, the shell’s kinetic energy and the shell’s binding
energy,


M+ = M� +
ml2w


R2w


r
Ṙ2 + 1 +


R2


l2
� 2M�


R
� m2l4w


2R1+4w
.


(11)
However, for the purpose of studying the time evolu-


tion of the shell’s radius it is more convenient to invert
Eq. (10), thus finding


Ṙ2 + V = 0 , (12)


where the radial e↵ective potential is


V = 1+
R2


l2
�M+ +M�


R
� (M+ �M�)2


m2


✓
R


l


◆4w


� m2l4w


4R2+4w
.


(13)
For the two-shell system that we are interested in, we


can use equation (11) to follow the radius R1,2 of the
outer- and innermost shells. For the innermost shell we
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Ṙ2 + 1 +


R2


l2
� 2M�


R
� m2l4w


2R1+4w
.


(13)
However, for the purpose of studying the time evolu-


tion of the shell’s radius it is more convenient to invert
Eq. (12), thus finding
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Ṙ2 + 1 +


R2


l2
� 2M�


R
� m2l4w


2R1+4w
.


(13)
However, for the purpose of studying the time evolu-


tion of the shell’s radius it is more convenient to invert
Eq. (12), thus finding
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For the two-shell system that we are interested in, we
can use equation (14) to follow the radius R1,2 of the
outer- and innermost shells. For the innermost shell we
set M� = 0 and M+ = M2 while the outermost will be
described by M� = M2 and M+ = M1. Because the
proper time for the two shells will not coincide, in gen-
eral, it is convenient to follow the evolution with respect
to the Schwarzschild time coordinate t for the region be-
tween the two shells. By considering Eqs. (2) and (5), the
Schwarzschild time t is directly related with the proper
time ⌧1,2 of the shell at radius R1,2,


dt


d⌧1,2
=


r
f(R1,2) +


⇣
Ṙ1,2


⌘2


f(R1,2)
. (17)


From this it immediately follows that the Schwarzschild
time evolution of each shell is governed by


✓
dR


dt


◆2


= �bV ⌘ � f(R)2V


f(R)� V
. (18)


III. RESULTS


A. Initial conditions


A. M1/l = 0.05,M2/l = 0.025, m1/l = m2/l = 0.9 ⇥
20�1�2w = 0.0136, w1 = w2 = 0.2, keeping free the ini-
tial location of the shells, Ri;
B. M1/l = �,M2/l = 0.5�, m1/l = m2/l = 0.9 ⇥
20�2w� = 0.2715�, w1 = w2 = 0.2, Ri/l = 1.5, keeping
free the parameter � that quantifies the energy content
in the spacetime.


B. Delayed collapse and critical behavior


MBH �M0 / |� � �⇤|� , (19)


— impose reflecting boundary conditions (in otherwise flat spacetime)
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The confined double-shell system: Time evolution
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For the two-shell system that we are interested in, we


can use equation (14) to follow the radius R1,2 of the
outer- and innermost shells. For the innermost shell we
set M� = 0 and M+ = M2 while the outermost will be
described by M� = M2 and M+ = M1. Because the
proper time for the two shells will not coincide, in gen-
eral, it is convenient to follow the evolution with respect
to the Schwarzschild time coordinate t for the region be-
tween the two shells. By considering Eqs. (2) and (5), the
Schwarzschild time t is directly related with the proper
time ⌧1,2 of the shell at radius R1,2,


dt
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From this it immediately follows that the Schwarzschild
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Ṙ1,2


⌘2


f(R1,2)
. (17)


From this it immediately follows that the Schwarzschild
time evolution of each shell is governed by


✓
dR


dt


◆2


= �bV ⌘ � f(R)2V


f(R)� V
. (18)


III. RESULTS


A. Initial conditions


For time evolution in AdS:


M1/l = 0.05, M2/l = 0.025,


m1/l = m2/l = 0.0136,


w1 = w2 = 0.2,


Ri/l = 1.5.


For shells in box:


type A: M1 = 1, M2 = 0.5,


m1 = m2 = 0.9,


w1 = w2 = 0.2,


Rext = 24.


keeping free the initial location of the shells, Ri;


type B: M1 = �, M2 = 0.1�,


m1 = m2 = 0.1�,


w1 = w2 = 1, Ri = 1.
keeping free the parameter � that quantifies the energy
content in the spacetime.


For shells in AdS:


type A: M1 = 0.05l,M2 = 0.025l,


m1 = m2 = 0.0136l, w1 = w2 = 0.2


keeping free the initial location of the shells, Ri;


type B: M1 = �l,M2 = 0.5�l, Ri = 1.5l


m1 = m2 = 0.2715�l, w1 = w2 = 0.2


keeping free the parameter � that quantifies the energy
content in the spacetime.


B. Delayed collapse and critical behavior


MBH �M0 / |� � �⇤|� , � ' 0.46± 0.05 (19)







10


The confined double-shell system: Time evolution


0 1 2 3 4 5 6 7 8
t/l


10-4
10-3
10-2
10-1
100


g t
t


10-1


100


101


R
/l


double-shell in AdS


2


where the radial e↵ective potential is


V = 1�M+ +M�
R


� (M+ �M�)2


m2
R4w� m2


4R2+4w
. (15)


V = 1+
R2


l2
�M+ +M�


R
� (M+ �M�)2


m2


✓
R


l


◆4w


� m2l4w


4R2+4w
.


(16)
For the two-shell system that we are interested in, we


can use equation (14) to follow the radius R1,2 of the
outer- and innermost shells. For the innermost shell we
set M� = 0 and M+ = M2 while the outermost will be
described by M� = M2 and M+ = M1. Because the
proper time for the two shells will not coincide, in gen-
eral, it is convenient to follow the evolution with respect
to the Schwarzschild time coordinate t for the region be-
tween the two shells. By considering Eqs. (2) and (5), the
Schwarzschild time t is directly related with the proper
time ⌧1,2 of the shell at radius R1,2,


dt


d⌧1,2
=


r
f(R1,2) +


⇣
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Results: Comparison between ‘cavity’ and ‘AdS’


✦ The critical exponent     is sensitive to the matter content, i.e. the choice of w.
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✦ A similar trend has been observed recently with massless scalar fields.


[Santos-Oliván, Sopuerta (2015)]
[Cai, Yang (2016)]


[Koike, Mishima (1995)]
[Maison (1996)]
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Results: Chaotic behavior


✦ The double-shell system in Newtonian gravity (without CC) is chaotic.
How about in GR, in AdS? [Miller, Youngkins (1997)]


[Barkov, Belinski, Bisnovatyi-Kogan (2005)]
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✦ Observe exponential growth in the separation between two initially nearby orbits. 
Eventually growth saturates because system is confined.
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✦ Similar behavior was observed for a massless scalar field in AdS.
[Oliveira, Pando Zayas, Terrero-Escalante (2012)]


[Farahi, Pando Zayas (2014)]


✦ The double-shell system in Newtonian gravity (without CC) is chaotic.
How about in GR, in AdS? [Miller, Youngkins (1997)]


[Barkov, Belinski, Bisnovatyi-Kogan (2005)]
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✦ The simplicity + richness afforded by this setup provides an ideal testbed for explorations 
of gravitational collapse in confining geometries and its holographic dual interpretations.


The study of the dynamics of these systems only requires solving two decoupled ODEs.


✦ We observe traces of critical behavior and chaotic nature in this setting, 
reminiscent of confined scalar fields undergoing ‘turbulent’ dynamics.


Conclusion:


✦ Depending on initial conditions one finds: — prompt collapse to a black hole


— delayed collapse


— perpetual oscillatory motion.
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Extra: Junction conditions


✦ Start with a single spherical shell.


M-


M+
✦ Geometries inside and outside are both Schwarzschild:


Some equations used for talks on confined double-shells systems


Jorge V. Rocha


Just some equations to use in talks


I. INTRODUCTION


We highlight the fact that the dynamics of such sys-
tems require only solving two decoupled ODEs.


II. THE DOUBLE-SHELL SYSTEM


A. Evolving shells individually


The time evolution of each shell can be followed in-
dividually up to the point that the two shells collide1.
The interior and exterior spacetimes are determined by
Birkho↵’s theorem to be described by AdS-Schwarzschild
spacetimes,


ds2 = �f(r)dt2 + f(r)�1dr2 + r2d⌦2 , (1)


f(r) =


✓
1� 2M


r


◆
. (2)


f(r) =


✓
1� 2M


r
+


r2


l2


◆
(3)


Here, l is the (constant) AdS curvature. Once this is
fixed, the only input needed is the gravitational mass of
the interior and exterior regions. The induced metric on
a shell of radius r = R(⌧) is then


d�2 = �d⌧2 +R(⌧)2d⌦2 , (4)


where ⌧ denotes the shell’s proper time and d⌦2 is the
line element on the unit two-sphere. We shall denote
derivatives with respect to ⌧ by an overdot.


The non-vanishing components of the extrinsic curva-
ture are straightforwardly computed,


K±
⌧⌧ = � �̇±


Ṙ
, K±


✓✓ = R�± = K±
��/ sin


2 ✓ , (5)


�± ⌘
q
Ṙ2 + f±(R) , (6)


where ± applies to exterior and interior quantities, re-
spectively.


Applying the Israel-Darmois junction conditions, a dis-
continuity of the extrinsic curvature signals the presence
of a non vanishing stress-energy tensor on the hypersur-
face given by


Sij = �(8⇡G)�1 ([Kij ]� gij [K]) , (7)


1
At such events we will have to make a choice for the subsequent


evolution and this will be discussed below.


where [X] ⌘ X+ �X� denotes the jump of any quantity
X across the shell’s surface and K± = �̇+/Ṙ+2�±/R is
the trace of the extrinsic curvature.
We take the matter on the shell to be described by a


perfect fluid,


Sij = (⇢+ P )uiuj + Pgij , (8)


where ui = �⌧i represents the fluid’s 3�velocity, ⇢ its
energy density and P its pressure. By equating (6) to (7)
we thus find


⇢ = � 1


4⇡GR
[�] , P =


1
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R


◆
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To close the system one must provide an equation of
state relating the fluid’s energy density and pressure. We
adopt, for simplicity, a linear equation of state P = w⇢,
with w a constant. Consequently, integration of (8)
yields


⇢ =
ml2w


4⇡GR2+2w
, (10)


with m a constant, corresponding to the shell’s invariant
mass and G denoting Newton’s constant. The inclusion
of the factor l2w is a matter of convenience, preserving
the mass dimension of m for any choice of equation of
state parameter w.
Inserting the above solution in Eq. (8) one can obtain


— after some massaging — a neat expression for the ex-
terior gravitational mass, which for the pressureless case
(w = 0) reduces to a sum of the interior gravitational
mass, the shell’s kinetic energy and the shell’s binding
energy,
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However, for the purpose of studying the time evolu-


tion of the shell’s radius it is more convenient to invert
Eq. (10), thus finding


Ṙ2 + V = 0 , (12)


where the radial e↵ective potential is
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For the two-shell system that we are interested in, we


can use equation (11) to follow the radius R1,2 of the
outer- and innermost shells. For the innermost shell we
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However, for the purpose of studying the time evolu-
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For the two-shell system that we are interested in, we


can use equation (11) to follow the radius R1,2 of the
outer- and innermost shells. For the innermost shell we
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and where primes stand for d/dR. The constraint (11)
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vanish in the limit of zero rotation. We stress that the
component ' controls the di↵erence between the angu-
lar momentum of the outer and inner spacetimes. These
results are also in line with Ref. [19], which considered
a spheroidal fluid shell separating two counter-rotating
Kerr regions in four spacetime dimensions and obtained a
stress-energy tensor of the form (13). In the present case,
setting the interior and exterior geometries to possess an-
gular momenta with opposite signs, but equal magnitude,
one similarly gets all components of the stress-energy ten-
sor vanishing except for the heat flow, which is aligned
with the Killing vector @


 


.
The strategy we have adopted, relying on the Darmois-


Israel matching formalism, improves on the perturbative
approach developed in Ref. [20], in the sense that the
solutions constructed herein account for all backreaction
e↵ects. In [20] it was found that the shell was required to
be corotating with the spacetime [21] but this can now
be relaxed at the expense of the fluid acquiring intrinsic
momentum and anisotropic pressure.


Energy conditions. — Energy conditions for imper-
fect fluids, such as (13), have been studied in [22] and are
most easily formulated in terms of the eigenvalues of the
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We highlight the fact that the dynamics of such sys-
tems require only solving two decoupled ODEs.


II. THE DOUBLE-SHELL SYSTEM


A. Evolving shells individually


Timelike shell defined by


t = T (⌧), r = R(⌧) (1)


The time evolution of each shell can be followed indi-
vidually up to the point that the two shells collide1.
The interior and exterior spacetimes are determined by
Birkho↵’s theorem to be described by AdS-Schwarzschild
spacetimes,
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Here, l is the (constant) AdS curvature. Once this is
fixed, the only input needed is the gravitational mass of
the interior and exterior regions. The induced metric on
a shell of radius r = R(⌧) is then


d�2 = �d⌧2 +R(⌧)2d⌦2 , (5)


where ⌧ denotes the shell’s proper time and d⌦2 is the
line element on the unit two-sphere. We shall denote
derivatives with respect to ⌧ by an overdot.


The non-vanishing components of the extrinsic curva-
ture are straightforwardly computed,
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where ± applies to exterior and interior quantities, re-
spectively.


Applying the Israel-Darmois junction conditions, a dis-
continuity of the extrinsic curvature signals the presence
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At such events we will have to make a choice for the subsequent


evolution and this will be discussed below.


of a non vanishing stress-energy tensor on the hypersur-
face given by


Sij = �(8⇡G)�1 ([Kij ]� gij [K]) , (8)


where [X] ⌘ X+ �X� denotes the jump of any quantity
X across the shell’s surface and K± = �̇+/Ṙ+2�±/R is
the trace of the extrinsic curvature.
We take the matter on the shell to be described by a


perfect fluid,


Sij = (⇢+ P )uiuj + Pgij , (9)


where ui = �⌧i represents the fluid’s 3�velocity, ⇢ its
energy density and P its pressure. By equating (7) to (8)
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To close the system one must provide an equation of
state relating the fluid’s energy density and pressure. We
adopt, for simplicity, a linear equation of state P = w⇢,
with w a constant. Consequently, integration of (9)
yields


⇢ =
ml2w


4⇡GR2+2w
, (11)


with m a constant, corresponding to the shell’s invariant
mass and G denoting Newton’s constant. The inclusion
of the factor l2w is a matter of convenience, preserving
the mass dimension of m for any choice of equation of
state parameter w.
Inserting the above solution in Eq. (9) one can obtain


— after some massaging — a neat expression for the ex-
terior gravitational mass, which for the pressureless case
(w = 0) reduces to a sum of the interior gravitational
mass, the shell’s kinetic energy and the shell’s binding
energy,
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However, for the purpose of studying the time evolu-


tion of the shell’s radius it is more convenient to invert
Eq. (11), thus finding


Ṙ2 + V = 0 , (13)


where the radial e↵ective potential is
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✦ The 2nd junction condition dictates the form of the shell stress-energy tensor. 
It’s a perfect fluid:


energy density pressure
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metric (1) is a solution of the vacuum Einstein equations
with a cosmological constant, equal to ⇤ = �6`�2. The
asymptotically flat case can be recovered by taking the
limit `! 1.


The largest real root of g�2 marks an event hori-
zon which possesses the geometry of a homogeneously
squashed S3. The mass M and angular momentum J of
the spacetime are given by [12]
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stress-energy tensor to take the form of an imperfect fluid
with anisotropic pressure and intrinsic momentum (also
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and where primes stand for d/dR. The constraint (11)
is already being used, so that h+(R) = h�(R) ⌘ h(R)
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tum ' and the anisotropic pressure term �P necessarily
vanish in the limit of zero rotation. We stress that the
component ' controls the di↵erence between the angu-
lar momentum of the outer and inner spacetimes. These
results are also in line with Ref. [19], which considered
a spheroidal fluid shell separating two counter-rotating
Kerr regions in four spacetime dimensions and obtained a
stress-energy tensor of the form (13). In the present case,
setting the interior and exterior geometries to possess an-
gular momenta with opposite signs, but equal magnitude,
one similarly gets all components of the stress-energy ten-
sor vanishing except for the heat flow, which is aligned
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approach developed in Ref. [20], in the sense that the
solutions constructed herein account for all backreaction
e↵ects. In [20] it was found that the shell was required to
be corotating with the spacetime [21] but this can now
be relaxed at the expense of the fluid acquiring intrinsic
momentum and anisotropic pressure.


Energy conditions. — Energy conditions for imper-
fect fluids, such as (13), have been studied in [22] and are
most easily formulated in terms of the eigenvalues of the
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✦ Self-sustained non collapsing configurations of multiple shells can exist, 
even without a confining mechanism.


Extra: Non collapsing configurations
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Extra: Non collapsing configurations
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Extra: Ida-Nakao formula
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For the two-shell system that we are interested in, we


can use equation (14) to follow the radius R1,2 of the
outer- and innermost shells. For the innermost shell we
set M� = 0 and M+ = M2 while the outermost will be
described by M� = M2 and M+ = M1. Because the
proper time for the two shells will not coincide, in gen-
eral, it is convenient to follow the evolution with respect
to the Schwarzschild time coordinate t for the region be-
tween the two shells. By considering Eqs. (2) and (5), the
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Ṙ1,2


⌘2


f(R1,2)
. (17)


From this it immediately follows that the Schwarzschild
time evolution of each shell is governed by


✓
dR


dt


◆2


= �bV ⌘ � f(R)2V


f(R)� V
. (18)


III. IDA-NAKAO FORMULA


M 0
2 = �(⌫21 + ⌫22)


r0
4


+ (f2 � 1� f1)
r0
4


�(⌫21 � 1)(⌫22 � f1)
r0
4f2


+
r0
2


�✏1✏2
r0
4f2


⇥
⌫41 � 2(1 + f2)⌫


2
1 + (1� f2)


2
⇤1/2


⇥
⇥
⌫42 � 2(f1 + f2)⌫


2
2 + (f1 � f2)


2
⇤1/2


where


fi = 1� 2Mi


r0
, ⌫i =


mi


r0
, ✏i = ±1 .


IV. RESULTS


A. Initial conditions


For self-sustained configuration:


M1 = 1 ,


M2 = 0.663 ,


m1 = m2 = 2.9 ,


w1 = w2 = 0.86 .


For time evolution in AdS:


M1/l = 0.05, M2/l = 0.025,


m1/l = m2/l = 0.0136,


w1 = w2 = 0.2,


Ri/l = 1.5.


For shells in box:


type A: M1 = 1, M2 = 0.5,


m1 = m2 = 0.9,


w1 = w2 = 0.2,


Rext = 24.


keeping free the initial location of the shells, Ri;


type B: M1 = �, M2 = 0.1�,


m1 = m2 = 0.1�,


w1 = w2 = 1, Ri = 1.


keeping free the parameter � that quantifies the energy
content in the spacetime.


For shells in AdS:


type A: M1 = 0.05l,M2 = 0.025l,


m1 = m2 = 0.0136l, w1 = w2 = 0.2


keeping free the initial location of the shells, Ri;


type B: M1 = �l,M2 = 0.5�l, Ri = 1.5l


m1 = m2 = 0.2715�l, w1 = w2 = 0.2


keeping free the parameter � that quantifies the energy
content in the spacetime.


B. Delayed collapse and critical behavior


MBH �M0 / |� � �⇤|� , � ' 0.46± 0.05 (19)


2


where the radial e↵ective potential is


V = 1�M+ +M�
R


� (M+ �M�)2


m2
R4w� m2


4R2+4w
. (15)


V = 1+
R2


l2
�M+ +M�


R
� (M+ �M�)2


m2


✓
R


l


◆4w


� m2l4w


4R2+4w
.


(16)
For the two-shell system that we are interested in, we


can use equation (14) to follow the radius R1,2 of the
outer- and innermost shells. For the innermost shell we
set M� = 0 and M+ = M2 while the outermost will be
described by M� = M2 and M+ = M1. Because the
proper time for the two shells will not coincide, in gen-
eral, it is convenient to follow the evolution with respect
to the Schwarzschild time coordinate t for the region be-
tween the two shells. By considering Eqs. (2) and (5), the
Schwarzschild time t is directly related with the proper
time ⌧1,2 of the shell at radius R1,2,


dt


d⌧1,2
=


r
f(R1,2) +


⇣
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Extra: Chaotic phase space


✦ Scan non-collapsing configurations:  system is quasi-periodic in the low energy regime.


M1 = d l
M2 = 0.5 d l
m1 = m2 = 0.2715 d l
w1 = w2 = 0.2


d = 0.03d = 0.0005






