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All or nearly all of the fastest spinning neutron stars 


we observe are not young stars but are instead old 


neutron stars that have been spun up by accretion 


from a companion.







The angular velocities of observed neutron stars 


show a cutoff below 800 Hz.  
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This limit on spin may be set by a gravitational-wave 


driven (CFS) instability of an r-mode – a perturbation 


of the fluid velocity


For old accreting stars, the


growth time b -1 is months 


or years. 


Animation by Chad Hanna
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At second-order in perturbation theory, 


radiation-reaction and quadratic terms in the 


perturbed Euler equation drive an  


exponentially growing differential rotation.


Friedman, Lindblom, Lockitch’16,  following Sa ’04 (stable mode), 


Levin & Ushormirsky ’00 (toy model)
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The differential rotation winds up a background 


magnetic field
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Chugunov ’15 
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And the growing magnetic field damps the 


r-mode instability when 
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Previous studies find damping of the instability 


in newborn stars with an initial B0 > 1010 G  


and damping or significant alteration of the 


unstable mode for old accreting neutron stars.  







Revisit: Two changes


1. Early studies of newborn neutron stars looked at proto-


neutron stars with large magnetic fields and assumed a   


large saturation amplitude (amplitude at which coupling 


to other modes stops the growth of the r-mode)


But a subsequent series of papers in 2nd-order perturbation 


theory finds 


(Arras, Bondarescu, Brink, Morsink, Teukolsky, Wasserman)


saturation with amplitude defined by
1
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100
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2.  Include back-reaction of growing magnetic field 


on growth of differential rotation.


A 1012 G field is too small to change 


the shape or frequency of the linear r-mode.  
(Morsink, Rezania, ’02; Lee ’ 05, Glampedakis, Andersson ’ 07,S. Abbassi, M. 


Rieutord; Lander, Jones, Passamonti, Lander, D. I. Jones, and A. Passamonti, ’10, V. 


Rezania ’12, Chirenti and J. Sk´akala ’13) 


But including even an initial 108 G  has a 


dramatic effect on the maximum growth of 


differential rotation.
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To see this, first look at adding differential 


rotation to a rotating star.  


Because the perturbed star is a nearby equilibrium, 


the perturbation is time-independent.  







But for an equilibrium star with a magnetic field, 


adding initial differential rotation is a 


periodic perturbation: 


Field lines wind and unwind with timescale the 


Alfvén time, time for wave in magnetic field to cross 


neutron star


Here’s what happens in a toy model invented by 


Stuart Shapiro, the star represented by differentially 


rotating fluid in a cylinder with an initially radial 


magnetic field.  The solution is exact.
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Stuart Shapiro, James Cook, Branson Stephens   


http://research.physics.illinois.edu/cta/movies/MBRAKING/INCOMPR/evolution.html     
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Driven system: a dramatic difference between 


a driven mode with zero-frequency and 


a driven mode with nonzero frequency when 


A > b:


zero-frequency                      frequency A
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Before nonlinear saturation
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Angular displacement reduced to 







zero-frequency                      frequency A


A constant force gives              oscillates


constant acceleration               about saturation


value


After nonlinear saturation


Angular displacement now limited for a normal core to 


 < 2 saturation







This estimate may greatly overstate max because 


the Alfvén frequency of a type II superconductor is 


much higher: NS core is probably superconducting, 


with flux tubes carrying field Hc ~1016 G
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Conclusion


Observed magnetic fields in X-ray binaries and 


double neutron star systems older than 107 yr have 


B<1011 G.  


The differential rotation possible at that field size is 


too small to significantly alter the linear r-mode or to 


drive the field to 1012 G.


Caveats:  


Calculations done for a discrete spectrum and 


assuming no zero-frequency modes that wind up the 


magnetic field, and neglecting MRI instability.    











Details: 


Equation governing the 2nd order r-mode is


B is anti-self adjoint, C self-adjoint


and they do not commute.


With discrete modes, nevertheless have a spectral 


decomposition of the form


with the mode functions    normalized by a 


conserved symplectic product.


terms quadratic in first - order perturbation
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The contribution from the nth mode is again of order


with 
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MHD Euler equation


Nonlinear perturbation: 
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The linear perturbation (r-mode) is an m=2 mode,


proportional to   


v + v· v + v +· v +v· vt GRf      


cos(2 ) tt eb 
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MHD Euler equation


Nonlinear perturbation: 


The linear perturbation (r-mode) is an m=2 mode,


proportional to   


v + v· v + v +· v +v· vt GRf      


cos(2 ) tt eb 







and terms quadratic in the first-order perturbation are


a sum of  m=0 and  m=4 parts
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The nonlinear perturbation has an axisymmetric part:







cylindrical radius 
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The axisymmetric part of the nonlinear r-mode is 


exponentially growing differential rotation:






