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Results for post-Newtonian approximation with spin
conservative part of the motion of the binary; see talk by M. Levi on Monday


post-Newtonian (PN) approximation: expansion around 1
c → 0 (Newton)


order c0 c−1 c−2 c−3 c−4 c−5 c−6 c−7 c−8


N 1PN 2PN 3PN 4PN


non spin " " " " "


spin-orbit " " "


S2
1 " " "


S1S2 " " "


Spin3 "(!)


Spin4 "(!)
...


. . .


" known (!) partial " derived last year
Work by many people (“just” for the spin sector): Barker, Blanchet, Bohé, Buonanno, O’Connell,
Damour, D’Eath, Faye, Hartle, Hartung, Hergt, Jaranowski, Marsat, Levi, Ohashi, Owen, Perrodin,
Poisson, Porter, Porto, Rothstein, Schäfer, Steinhoff, Tagoshi, Thorne, Tulczyjew, Vaidya
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Zones, separation of scales, and effective theory
EFT program in classical gravity: Goldberger, Rothstein, PRD 73 (2006) 104029; . . .


various zones→ separation of scales


scales continue down the star:
→ fluid, nucleons, quarks, ?


The physics at “smaller” scales admits
an Effective Field Theory (EFT) description!


Here: Effective theory for dynamical tides
→ dynamical, time-dependent response


(of the inner zone to perturbations from the outer zone)


→ harmonic oscillator effective theory for multipoles
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Dynamical tides in general relativity
Their description through an effective action [JS, Hinderer, Taracchini, Buonanno, in preparation]


Relativistic effective Lagrangian for dynamical tides: Qµνuν = 0


LQ =
z


4λω2
f


[
1
z2


DQµν


dσ
DQµν


dσ
− ω2


f QµνQµν


]
− z


2
EµνQµν +


z
4


K EµνEµν + ...


uµ =
Dxµ


dσ
, z =


√
−uµuµ (is the redshift for σ = t)


Newtonian case: [Flanagan, Hinderer, PRD 77 (2008) 021502]
λ is the tidal deformability (Love number)
identify ωf with real part of quasi-normal-mode frequency
K linked to (almost) completeness of modes: K ≈ 0


ωf and K are not fixed by a matching, but by physical intuition!


a prescription for the dynamical response is in Chakrabarti, Delsate, JS, arXiv:1304.2228
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Relativistic effects on dynamic tides


What are the genuine relativistic effects?


redshift effect
gravitomagnetism
→ frame dragging effect
∼ Zeeman effect


Both effectively shift
the resonance frequency ωf
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Computing the post-Newtonian (PN) corrections


Frame dragging interaction


tidal spin: Sij
Q = 4Qk [iP j]k


generates infinitesimal rotations
→ frame dragging


substitute Sij → Sij
Q in known potentials! → lazy


The tidal driving force


tidal: − 1
2


EµνQµν vs. spin induced:
CES2


2m
EµνSµSν


again substitute: CES2SiSj → −mQ ij in S2 known potentials


super lazy!!! agrees with Vines, Flanagan, PD 88 (2013) 024046


Harder: implementation into effective-one-body, analyze various models, . . .
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Conclusions


All you need is λ! ?


Almost, need more coefficients
linked to dynamical tides!


λ, ωf , K , . . .


Dynamical tides become important
close to resonance with ωf


Increase tidal effect by ∼ 30%!


Dynamical tides are important for accurate waveform models
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NS-BH waveform, TEOB models vs NR
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Effective-one-body Hamiltonian
for 1PN dynamical tides, see also Hinderer etal, PRL 116 (2016) 181101


effective test-particle Hamiltonian (point-mass potentials A, D)


Heff =


√√√√(A + Eij Q ij )


[
µ2


(
1 +


2
µ


zcHo + Cij Q ij


)
+


p2
φ


r2
+


p2
r


D
+O(p4


r )


]
+ fDT


oscillator Hamiltonian: Ho = λω2
f Pij Pij +


Q ij Q ij


4λ
1PN tidal force XA = mA/M, M = m1 + m2, ν = X1X2, µ = Mν, u = M/r


Eij = −
3Gm2


µr3
ni nj {1− [2X2 − (1− c1)ν]u}


Cij =
3Gm2


µ3r3


{
Li Lj


r2
+ [1 + (c2 − 2c1)ν] ni pj pr +


[
(1− c1)p


2 + (5c1 − c2)p
2
r


]
νni nj


}
gauge parameters c1, c2. blue term: no gauge parameters!
redshift factor (normalized to 1 for m1 � m2)


zc = 1 +
3
2


X1u +
ν


2
(1 + 2c1)


[
p2


µ2
− u


]


frame dragging terms ∼ spin-orbit + corotating frame, “SQ = Q × P”


fDT = −~SQ ·~L
1


µ2r2


{
1 + [3X1 − 5− (1 + c2)ν]


u
2
− (1− c2ν)


p2


2µ2
− c2ν


p2
r


µ2


}
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Test-particle and effective-one-body Hamiltonians


Test-particle Hamiltonian 101:


get mass-shell constraint: 0 = µ2 + pµpµ+ tidal terms, pµ =
∂L
∂uµ


solve for the energy H ≡ −p0


Absorb interaction into the metric:
notice E ∝ p2


factorize p2 terms: 0 = µ2 + 2µHoszi +


[
gµν − 1


2µ2 RαµβνQµν


]
︸ ︷︷ ︸


gµν
eff


pµpν


also works for higher multipoles


When used for EOB: no pole at the light ring in H
pole can be always by removed Akcay, etal, PRD 86 (2012) 104041


but also no gauge-invariant centrifugal radius
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