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C 2- Causality Theory

Majority of standard references on causality theory [1] assume that
the metric is smooth, or at least sufficiently differentiable for all
proofs to work.

Most other treatments [2] are more explicit about the differentiability
of the metric and assume the metric is C 2.

Only a few [3] consider lower regularity metrics.

For C 2 metrics the inverse function theorem shows that locally the
causal structure is as in Minkowski space, in the sense that

expp : Ũ → U is a C 1-diffeomorphism

and
I+(p) ∩ U = expp

(
I+(0) ∩ Ũ

)
For metrics below C 2 this result is problematic.
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Why consider metrics of regularity lower than C 2?

(1) PDE Theory: (Classical result) [Choquet-Bruhat] There exist
solutions of the Einstein vacuum equations with initial data
(h, k) ∈ Hs

loc × Hs−1
loc with s > 5/2 for which g is not C 2.

Recent results using bilinear estimates allow solutions of even lower
regularity c.f. the L2-curvature conjecture. [Klainermann et al]

(2) Physical models: Want to be able to include situations where there is
a shock in the matter or a jump in the energy-momentum tensor
across an interface, such as the boundary of a star.

jump in density→ jump in curvature→ metric not C 2

(3) Singularity Theorems: Failure to be C 2 need not be very singular
(see below and next talk). So we want to be able to prove singularity
theorems in lower regularity than C 2. Need causality theory in lower
regularity than C 2.
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Why C 1,1 metrics?
C 1,1 metrics are continuously differentiable with Lipschitz first derivatives.
By Rademacher’s Theorem ∂igjk is differentiable almost everywhere and as
a result C 1,1 is often written as C 2−.

C 1,1 metrics have the following properties:

Exist unique local solutions to the geodesic equation

expp : Ũ → U is Lipschitz

The curvature is defined almost everywhere and is bounded.

Problems below C 1,1:

Below C 1,1 geodesic convexity may no longer hold [Hartman &
Wintner]

Below C 0,1 may not be able to deform a causal curve that is not
everywhere null into a timelike curve. (Pushup lemma fails) [Chrusćiel
& Grant].

Below C 0,1 exist “bubbling metrics” with light-cones having
non-empty interior [Chrusćiel & Grant].
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Totally convex neighbourhoods for C 1,1 metrics

Key results: [Kunzinger, Steinbauer, Stojković], [Minguzzi]

Theorem: Let M be a smooth manifold with a C 1,1-pseudo-Riemannian
metric g and let p ∈ M. Then there exist open neighbourhoods Ũ of
0 ∈ TpM and U of p in M such that

expp : Ũ → U

is a bi-Lipschitz homeomorphism.
Remark: It from Rademacher’s theorem that both expp and exp−1

p are
differentiable almost everywhere.

Theorem: Let M be a smooth manifold with a C 1,1-pseudo-Riemannian
metric g . Then each point p ∈ M possesses a basis of totally normal
neighbourhoods.
Remark: A totally normal set is geodesically convex.
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Two complementary approaches to proving causality
results for C 1,1 metrics

(1) [KSSV] Follow method of Chrusćiel & Grant and approximate g by a
family of smooth metrics gε → g while controlling the causal
structure.

I Can be applied to a wide class of metrics (not just C 1,1).
I Can make use of results from smooth causality theory.
I Less precise information.
I Some results are valid only almost everywhere.

(2) [Minguzzi] Look at geodesic equation for g and use Picard-Lindelöf
iteration and an inverse function theorem for Lipschitz maps.

I Gives more precise information e.g. D0 expp = idTpM

I exp is a bi-Lipschitz map in a neighbourhood of the zero section of TM
I Not applicable below C 1,1.
I Cannot make use of results from smooth theory.

Both needed to prove singularity theorems in low regularity.
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Chrusćiel-Grant regularisation of the metric

Sandwich null cones of g between null cones of two families of smooth
metrics so that ǧε ≺ g ≺ ĝε.

ǧ g ĝ

Locally, gε := g ∗ ρε, glued by partition
of unity subordinate to Ui b M.

Same way: construct time-like 1-form ω
s.t. |ω(X )| ≥ ci > 0 for all g -causal
vector fields X with ‖X‖h = 1.

ǧη,λ := gη + λω ⊗ ω
Adapt λ = λ(ε) and η = η(ε) locally
s.t. for ε small

g(X ,X ) ≤ 0 & ‖X‖h = 1⇒ gη,λ(X ,X ) < 0

Glue w.r.t. x and ε to obtain Lorentzian
metric ǧε ≺ g .

Similarly obtain ĝε with ǧε ≺ g ≺ ĝε.
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(GR 21 – Columbia University) 7 / 11
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Locally, gε := g ∗ ρε, glued by partition
of unity subordinate to Ui b M.

Same way: construct time-like 1-form ω
s.t. |ω(X )| ≥ ci > 0 for all g -causal
vector fields X with ‖X‖h = 1.
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(GR 21 – Columbia University) 7 / 11
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metric ǧε ≺ g .

Similarly obtain ĝε with ǧε ≺ g ≺ ĝε.
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ǧ g ĝ
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Properties of approximating metrics

Given a Lorentzian metric of some prescribed regularity (e.g.,
Sobolev, Hölder, etc.), the convergence of the inner and outer
regularisations ǧε and ĝε to g is as good locally as that of
regularisation by convolution.

If g is a metric of general pseudo-Riemannian signature, then we may
produce regularisations g̃ε that are pseudo-Riemannian metrics on all
of M of the same signature as g

Every point has a basis of normal neighbourhoods U with
expp : Ũ → U, such that for ε sufficiently small, all expgε

p are

diffeomorphisms with domain Ũ . Moreover, the inverse maps
(expgε

p )−1 also are defined on a common neighbourhood of p for ε
small, and converge locally uniformly to exp−1

p .
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C 1,1 causality results
The following is the main local causality result for C 1,1 metrics:

Theorem: [KSSV] Let g be a C 1,1-Lorentzian metric, and let p ∈ M.
Then p has a basis of normal neighbourhoods U, expp : Ũ → U a
bi-Lipschitz homeomorphism, such that:

I+(p,U) = expp(I+(0) ∩ Ũ)

J+(p,U) = expp(J+(0) ∩ Ũ)

∂I+(p,U) = ∂J+(p,U) = expp(∂I+(0) ∩ Ũ)

Proof: Proof of Theorem

Remark: We follow [Chrusćiel] in that we base our approach to causality
theory on locally Lipschitz curves. This definition differs from that of
[Minguzzi] (and others) where the corresponding curves are required to be
C 1. However we have the following Corollary to the above result:
Corollary: Let U ⊆ M be open, p ∈ U. Then the sets I+(p,U), J+(p,U)
remain unchanged if Lipschitz curves are replaced by piecewise C 1 curves,
or in fact by broken geodesics.
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Proof of J+(p,U) = expp(J+(0) ∩ Ũ)

1. We first show that J+(p,U) ⊇ expp(J+(0) ∩ Ũ).

Let v ∈ Ũ and let α(t) = expp(tv). Set αε(t) := expĝε
p (tv).

Then αε → α in C 1.
Hence applying the smooth Gauss lemma for each ε it follows that:
g(α′(t), α′(t)) = lim

ε→0
ĝε(α

′
ε(t), α′ε(t)) = lim

ε→0
(ĝε)p(v , v) = gp(v , v).

So v ∈ Ũ ∩ J+(0)⇒ expp(v) ∈ J+(p,U).

2. We now show that J+(p,U) ⊆ expp(J+(0) ∩ Ũ).
Let α : [0, 1]→ U be a FD causal curve in U from p
Let β := (expp)−1 ◦ α be the corresponding curve in Ũ ⊂ TpM.

Note that α is TL wrt ĝε and set βε := (expĝε
p )−1 ◦ α.

Then by smooth causality βε([0, 1]) ⊆ I+
ĝε(p)(0) for all ε < ε0.

Let Q̃(v) = gp(v , v) and Q̃ε(v) = (ĝε)p(v , v) be quadratic forms on TpM.
Then βε → β uniformly, and Q̃ε → Q̃ locally uniformly.
So Q̃(β(t)) = lim

ε→0
Q̃ε(βε(t)) ≤ 0 Hence β((0, 1]) ⊆ J+(0) ∩ Ũ.

Back

(GR 21 – Columbia University) 11 / 11



Proof of J+(p,U) = expp(J+(0) ∩ Ũ)
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ε→0
ĝε(α

′
ε(t), α′ε(t)) = lim

ε→0
(ĝε)p(v , v) = gp(v , v).

So v ∈ Ũ ∩ J+(0)⇒ expp(v) ∈ J+(p,U).

2. We now show that J+(p,U) ⊆ expp(J+(0) ∩ Ũ).
Let α : [0, 1]→ U be a FD causal curve in U from p
Let β := (expp)−1 ◦ α be the corresponding curve in Ũ ⊂ TpM.

Note that α is TL wrt ĝε and set βε := (expĝε
p )−1 ◦ α.

Then by smooth causality βε([0, 1]) ⊆ I+
ĝε(p)(0) for all ε < ε0.

Let Q̃(v) = gp(v , v) and Q̃ε(v) = (ĝε)p(v , v) be quadratic forms on TpM.
Then βε → β uniformly, and Q̃ε → Q̃ locally uniformly.
So Q̃(β(t)) = lim

ε→0
Q̃ε(βε(t)) ≤ 0 Hence β((0, 1]) ⊆ J+(0) ∩ Ũ.
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