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Summary

We consider spherically symmetric spacetimes with elastic matter and
determine the propagation speed of elastic waves in the radial direction.
The propagation speed depends on the density, radial pressure and
elasticity tensor components.
The local causality condition for the speed of elastic waves is analysed for
shear free spherically symmetric elastic solutions of the Einstein field
equations.
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Outline

Introduction to general relativistic elasticity

(Carter and Quintana (1972), Kijowski and Magli (1992), Karlovini and

Samuelsson (2003))

Wave propagation in general relativistic elastic spacetimes

(Karlovini and Samuelsson (2003), Carter (1973))

Applications to spherically symmetric elastic spacetimes

(Brito, Carot, Vaz (2010))
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Configuration mapping

The space-time configuration of the material is described by the mapping

Ψ : M −→ X .

(M, gab) space-time with coordinate system {xa}, a = 0, 1, 2, 3

(X , γAB) material space with material metric γAB and coordinate
system {yA}, A = 1, 2, 3

The material space is a three-dimensional manifold, whose points
represent the particles of the material.
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Pulled-back material metric

kab = Ψ∗γAB = yA
a y

B
b γAB

yA
a =

∂yA

∂xa
is the relativistic deformation gradient.

Velocity field of the matter

The velocity field of the matter ua ∈ TpM is defined by the conditions

uayA
a = 0

uaua = −1

u0 > 0
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Relativistic strain tensor

The operator K a
b = −uaub + ka

b can be used to measure the state of
strain of the material.

The relativistic strain tensor is defined by

sab =
1

2
(hab − kab) =

1

2
(gab − Kab),

where hab = gab + uaub.

The material is in an unstrained state if sab = 0.
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Energy-momentum tensor

The energy-momentum tensor for elastic matter

Tab = ρuaub + pab = ρuaub + phab + πab

can be written as

T a
b = −ρ δab +

∂ρ

∂I3
detK hab −

(
TrK

∂ρ

∂I2
− ∂ρ

∂I1

)
ka

b +
∂ρ

∂I2
ka

c k
c
b.

ρ = εv energy density

ε particle number density

v = v(I1, I2, I3) constitutive equation

I1, I2 and I3 are the invariants of K :

I1 = 1
2 (TrK − 4) , I2 = 1

4

[
TrK 2 − (TrK )2

]
+ 3, I3 = 1

2 (detK − 1)
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Equations of motion

The conservation law

T ab
;b = 0

implies the following equations of motion

ρ,cu
c = −ρuc;c − pcduc;d

pab;cu
c = 2u(apb)c u̇c + 2pc(au

b)
;c − pabuc;c − E abcduc;d

where

u̇a = ua;cu
c

E abcd is the relativistic elasticity tensor.
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Relativistic elasticity tensor

The relativistic elasticity tensor

E abcd = −2
∂pab

∂hcd
− pabhcd

satisfies the symmetry conditions

E abcd = E (ab)(cd) = E cdab

and is orthogonal to the velocity of the flow

E abcdud = 0.

It can be rewritten as

E abcd = 4ε
∂2v

∂gabgcd
.
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Relativistic Hadamard elasticity tensor

The relativistic Hadamard elasticity tensor is defined by

Aabcd = E abcd − hacpbd .

This tensor has the symmetry

Aabcd = Acdab

and is orthogonal to the velocity of the flow

Aabcdud = 0.
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Sound wave front

The sound wave front is a hypersurface which moves in spatial direction
νa with speed w with respect to the flow ua at some point.
The normal to the wave front lies in the direction of the vector

λa = νa − wua.

The propagation direction vector νa satisfies

νaνa = 1, νaua = 0.

The speed of propagation of the wave front

w = λaua

must satisfy
w2 ≤ 1.
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Sound wave front

The acceleration vector u̇a can have a jump discontinuity across the
hypersurface

[u̇a] = αιa.

α is the amplitude of the wave front.

ιa is the polarization vector of the wave front, satisfying

ιaιa = 1

ιaua = 0.
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Sound wave front

From the conservation law, one obtains

{w2(ρhac + pac)− Qac}ιc = 0.

Qac is the relativistic Fresnel tensor defined by

Qac = Aabcdvbvd

= (E abcd − hacpbd)vbvd ,

satisfying

Qac = Q(ac)

Qacuc = 0.
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Spherically symmetric space-time configuration

Space-time metric g

ds2 = −a2(t, r)dt2 + b2(t, r)dr2 + Y 2(t, r)(dθ2 + sin2 θdφ2),

gab = −uaub + e1ae1b + e2ae2b + e3ae3b

e1a = (0, b, 0, 0) , e2a = (0, 0,Y , 0), e3a = (0, 0, 0,Y sin θ)

Velocity vector of the flow

ua =
(
a−1, 0, 0, 0

)
Pulled-back material metric k

dΣ2 = f 2(r)
(
dr2 + r2dθ2 + r2 sin2 θdφ2

)
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Spherically symmetric space-time configuration

The operator K a
b = −uaub + ka

b is given by

K a
b =


1 0 0 0

0 f 2(r)
b2 0 0

0 0 f 2(r) r2

Y 2 0

0 0 0 f 2(r) r2

Y 2

 .

It has one eigenvalue equal to 1 and the other eigenvalues are

η = f 2(r)
b2 and s = f 2(r) r2

Y 2 .

Invariants of K :

I1 =
1

2
(η + 2s − 3)

I2 = −1

2

(
s2 + 2ηs + η + 2s

)
− 3

I3 =
1

2

(
ηs2 − 1

)
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Energy-momentum tensor

T 0
0 = −εv ,

T 1
1 = 2 ε η

∂v

∂η
= p1,

T 2
2 = ε s

∂v

∂s
= p2.

Constitutive equation v = v(s, η)

Energy density ρ = εv = ε0 s
√
η v(s, η)
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Elasticity tensor

E abcd = 4ε
∂2v

∂gab∂gcd

= 4ε

[(
2η
∂v

∂η
+ η2

∂2v

∂η2

)
1

b4
δar δ

b
r δ

c
r δ

d
r

+

(
2η2

η − s

∂v

∂η
+

s2

s − η
∂v

∂s

)(
δ
(a
r δ

b)
θ δ

(c
r δ

d)
θ

b2Y 2
+
δ
(a
r δ

b)
φ δ

(c
r δ

d)
φ

b2Y 2 sin2 θ

)

+
1

2
ηs

∂2v

∂η∂s

(
δar δ

b
r δ

c
θδ

d
θ + δcr δ

d
r δ

a
θδ

b
θ

b2Y 2
+
δar δ

b
r δ

c
φ0δ

d
φ + δcr δ

d
r δ

a
φδ

b
φ

b2Y 2 sin2 θ

)

+

(
3

4
s
∂v

∂s
+

1

4
s2
∂2v

∂s2

)(
δaθδ

b
θδ

c
θδ

d
θ

Y 4
+
δaφδ

b
φδ

c
φδ

d
φ

Y 4 sin4 θ

)

+

(
1

4
s
∂v

∂s
+

1

4
s2
∂2v

∂s2

)
δaθδ

b
θδ

c
φδ

d
φ + δaφδ

b
φδ

c
θδ

d
θ

Y 4 sin2 θ

]
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Propagation direction vector

For longitudinal waves in the radial direction:

νa = ιa =
[
0, b−1, 0, 0

]
Propagation speed

From the characteristic equation

{w2(ρhac + pac)− Qac}ιc = 0,

one obtains

w2 =
bQrr

ρ
b + bprr

=
b3E rrrr − bprr

ρ
b + bprr

.
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Propagation speed

Since

E rrrr =
4ε

b4

(
2η
∂v

∂η
+ η2

∂2v

∂η2

)
and

ρ = εv , prr = T rr = 2εη
∂v

∂η

1

b2
,

then

w2 =
6εη ∂v∂η + 4εη2 ∂

2v
∂η2

εv + 2εη ∂v∂η

=
3p1 + 4εη2 ∂

2v
∂η2

ρ+ p1
.
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Examples

Static shear-free solution

Space-time metric

ds2 = −e10r
2

dt2 + e−5r
2 (
dr2 + dθ2 + sin2 θdφ2

)
Pulled-back material metric

dΣ2 = f 2(r)
(
dr2 + r2dθ2 + r2 sin2 θdφ2

)
, f (r) =

e−
5
2 r

2

(75r2 + 1)
1
3

Energy density

ρ = εv =
1

8π
e5r

2

(11− 25r2)

Radial pressure and tangential pressure

p1 = 2εη
∂v

∂η
= − 1

8π
e5r

2

(25r2 + 1), p2 = εs
∂v

∂s
=

1

8π
25r2e5r

2
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Examples

Static shear-free solution

Propagation speed

w2 =
9375r6 + 1750r4 − 20r2 − 1

−1250r4 + 250r2

2
w

r

2
w

r

r ∈
(
0, 1√

5

)
r ∈ (0.166797, 0.276078)
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Examples

Non-static shear-free solution

Space-time metric

ds2 =− dt2 + t2B2(r)
(
dr2 + dθ2 + sin2 θdφ2

)
B(r) =

√
3

9

(
2 + 3(r − r0)2

) 3
2

Pulled-back material metric

dΣ2 = f 2(r)
(
dr2 + r2dθ2 + r2 sin2 θdφ2

)
f (r) =

exp

−15−9(r−r0)
2+ 3

2 (2+3(r−r0)2)
√

4+6(r−r0)2 tanh−1

(
2√

4+6(r−r0)
2

)
√

6+9 (r−r0)2(2+3 (r−r0)2)


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Examples

Non-static shear-free solution

Energy density

ρ = −T 0
0 =

1

8π t2

(
−2B ′′

B3
+

B ′2

B4
+

1

B2
+ 3

)
Radial pressure

p1 = T 1
1 =

1

8π t2

(
B ′2

B4
− 1

B2
− 1

)
Tangential pressure

p2 = T 2
2 =

1

8π t2

(
B ′′

B3
− B ′2

B4
− 1

)
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Examples

Non-static shear-free solution

Propagation speed

w2 =
( 2

3−B)
(
− B′2

B +B3+B
)
+rB′

(
−B′′+ B′2

B2 + B′2
B +B3−B2−1

)
−BB′′+B′2+B4

2
w

r

w2 for r0 = 1 and r ∈ (0, 3)
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Examples

Non-static shear-free solution

2
w

r

2
w

r

0 ≤ w2 ≤ 1 for r ∈ (0.453677, 0.506165) 0 ≤ w2 ≤ 1 for r ∈ (1.009721, 1.145846) and for

r ∈ (1.410349, 1.465197)
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