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Introduction

Summary

We consider spherically symmetric spacetimes with elastic matter and
determine the propagation speed of elastic waves in the radial direction.
The propagation speed depends on the density, radial pressure and
elasticity tensor components.

The local causality condition for the speed of elastic waves is analysed for
shear free spherically symmetric elastic solutions of the Einstein field
equations.
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@ Introduction to general relativistic elasticity

(Carter and Quintana (1972), Kijowski and Magli (1992), Karlovini and
Samuelsson (2003))

@ Wave propagation in general relativistic elastic spacetimes

(Karlovini and Samuelsson (2003), Carter (1973))

@ Applications to spherically symmetric elastic spacetimes

(Brito, Carot, Vaz (2010))
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Configuration mapping

The space-time configuration of the material is described by the mapping

v:M— X.

o (M, g.p) space-time with coordinate system {x?}, a=0,1,2,3

@ (X,~vag) material space with material metric yag and coordinate
system {y*}, A=1,2,3

The material space is a three-dimensional manifold, whose points
represent the particles of the material.




General relativistic elasticity

Pulled-back material metric

ko = V*vap = y2yByas

= —— is the relativistic deformation gradient.

Velocity field of the matter

The velocity field of the matter u® € T,M is defined by the conditions

iyt =0
vilu, =—1

>0
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Relativistic strain tensor

The operator K?) = —uup, + k7, can be used to measure the state of
strain of the material.

The relativistic strain tensor is defined by
1 1

atha *ka =% a*Ka7

Sab = 5 (hab — kav) = 5 (gab — Kap)

where h,p = gap + UsUp.

The material is in an unstrained state if s;, = 0.




Energy-momentum tensor

The energy-momentum tensor for elastic matter
Tab = puaUp + Pab = puatp + phap + Tap

can be written as

ap dp Op op
T2, =—pip+ ——detKh?, — | TrK — — — | k% + = k_ k.
AT ( ok " an) r o ek
@ p=ecv energy density
@ ¢ particle number density
@ v=v(h,h,kL) constitutive equation
1, I, and L are the invariants of K:
h=1(Trk—4), h=21[Trk2- (TrK)ﬂ +3, l=1(detk — 1)




Equations of motion

The conservation law

T, =
implies the following equations of motion
® peut = —pus. — pucy
~ pab;cuc — 2ulapheg, + 2pc(aul?l _ pabuc;c — Eabedy g
where
o u® =ui u°

o E2b<d s the relativistic elasticity tensor.




Relativistic elasticity tensor

The relativistic elasticity tensor

apab

Eabcd )
ahcd

_ pabhcd

satisfies the symmetry conditions
Eabcd _ E(ab)(cd) _ Ecdab
and is orthogonal to the velocity of the flow
Eabcdud -0
It can be rewritten as
v

Eabed —ge——
6gabgcd
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Relativistic Hadamard elasticity tensor

The relativistic Hadamard elasticity tensor is defined by

Aabcd _ Eabcd _ hacpbd.

This tensor has the symmetry

Aabcd — Acdab

and is orthogonal to the velocity of the flow

AP ug = 0.
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e Wave propagation



Wave propagation

Sound wave front

The sound wave front is a hypersurface which moves in spatial direction
12 with speed w with respect to the flow u? at some point.
The normal to the wave front lies in the direction of the vector

Aa = Vs — WU,
The propagation direction vector v? satisfies
viv, =1, viu, =0.
The speed of propagation of the wave front
w = Nu,

must satisfy
w? < 1.




Sound wave front

The acceleration vector 4? can have a jump discontinuity across the
hypersurface
[£7] = au?.

@ « is the amplitude of the wave front.
@ (7 is the polarization vector of the wave front, satisfying




Wave propagation

Sound wave front

From the conservation law, one obtains

{W2(phac + paC) _ QaC}Lc =0.

Q7€ is the relativistic Fresnel tensor defined by

Qac _ Aabcd VbVg

_ (Eabcd _ hacpbd)Vde,

satisfying

e Q= Q(ac)
o R*u.=0.
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Spherically symmetric space-time configuration

@ Space-time metric g
ds? = —a%(t, r)dt® + b*(t, r)dr® + Y?(t, r)(d6? + sin® 0d¢?),
8ab = —UaUp + €15€1p + 22625 + €32€3p
e1a = (0,5,0,0), e, = (0,0, Y,0), es, =(0,0,0, Ysin0)
@ Velocity vector of the flow
v’ =(a=%,0,0,0)
@ Pulled-back material metric k

dx? = f2(r) (dr* + r*d6? + r’sin® d¢?)




Spherically symmetric space-time configuration

@ The operator K?, = —u?up, + k%, is given by
1 0 0 0
f-2
Koy =| 0 " 0. 0
0 0 f3(r) 0
0 0 0 F2(r) <

It has one eigenvalue equal to 1 and the other eigenvalues are
2
n= —fb(;) and s = f2(r) {,—22

@ Invariants of K:

1

/125(77-1—25—3)

Izz—%(52+2ns+n—|—2s)—3
1

/3:5(7752—1)




Energy-momentum tensor

Tg = —ev,
ov
Tl = 2 _— =
1 ET’ a pla
ov
T2 pu— —_— .
2 — €S ds P2

o Constitutive equation v = v(s,7)
o Energy density p = ev = € s/nv(s,n)




Elasticity tensor

v
8gabagcd

v
_46[< o T

27?2 Bv 52

Eabcd — 4e

_|_

on?

2
8") = s25bscsd

ptororerer

(a5b) s(c 5d)
0r 04 0r 0

—587}

+

v\ (808 )
s—nds b2Y?

b2Y2sin? 6
asbsc sd csdsasb
820055009 + 8559626

)

Los
2" 87}85
(3 8v 1 262

* 1% 992

s—
4 0Os
1 8v 1 232

= 4 0s?

v (535’?5656’ + 66962058

b2Y2
a §b sc sd
33058509

03949595 , 9%
) (7

Y4sin® 0
) 03085569 + 5;5;555;’]

Y4sin’ 6

b2Y?2sin’ 6

)

)
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Propagation direction vector

For longitudinal waves in the radial direction:

v =1:12=1[0,b"1,0,0]

Propagation speed

From the characteristic equation
{wz(ph‘” + pac) _ Qac}bc _ 07

one obtains

_%_’_bprr_ %—i—bp”

2 err B b3Errrr _ bprr
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Propagation speed

Since )
4e ov 0°v
Emr — = 2Y v
( Ton T 0772)
and oy 1
v
p=ev, p"=T"= 26N 50 B2
then
2 _ 66’17 + 467728 Y
" _‘'on = "' on°

€V + 2677—

3p1 + 461728 4
p+p1 '
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EES

Static shear-free solution

@ Space-time metric

ds? = —e'%" dt? + 75 (dr® + d6? + sin? 0d?)

@ Pulled-back material metric

2

e 2"

d¥? = f2(r) (dr* + r?d0? + r*sin® 0d¢?), f(r)= ————
(r)( ), 1) (75r2 +1)3

o Energy density
1
p=ev= 8—ﬂ_e5r2(11 — 25r?)

@ Radial pressure and tangential pressure

ov 1 .2 ov 1 P
=2en—=——¢€"(25r" +1 =es— = —25r%”
p1 = 2en o = (25r° +1), pp=es 5~ gl e
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Examples

Static shear-free solution

@ Propagation speed
> 9375r% +1750r* — 20r? — 1
w =
—1250r% + 250r2
// ///
]| pd
| / .
re (o, %) r € (0.166797,0.276078)
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EES

Non-static shear-free solution

@ Space-time metric

ds? = — dt* + t*B*(r) (dr® + d6? + sin 0d¢?)

B(r) = ? (2+3(r— r0)2)

[N

@ Pulled-back material metric
d¥? = 2(r) (dr* + r*d¢® + r*sin® 0d$?)

f(r)=
—15—9(r—ro)?+3 (2+3(r—r0)?)y/4+6(r—ro)? tanh—* (ﬁ)

V649 (r—r0)2(2+3 (r—ro)?)

exp
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EES

Non-static shear-free solution

@ Energy density

o 1 28" B2 1
e\ B BB

@ Radial pressure
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Examples

@ Propagation speed

2_B)(-E21B%+B)+rB (-B/+E5+E2 1B B2_1
W2 = (3 )< z —>BB”—SB’2+B4BZ i )

o 05 1 5| 3 25 3

w? for rp = 1 and r € (0, 3)




EES

Applications to spherical symmetry
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0 < w? < 1forr € (0.453677, 0.506165) 0< w2 < 1forre (1.009721, 1.145846) and for
r € (1.410349, 1.465197)
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