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CONSERVED CHARGES FOR INTEGRABLE QFTS IN INFLATION

INTRODUCTION AND MOTIVATION
▸ Many studies of quantum effects in cosmology rely on perturbation theory 

(Cf. talks in B4, C4!) 

▸ Alternative approach: study integrable models 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Constructing integrable QFTs on cosmological backgrounds 
stands to give insight both to quantum cosmology and QFT.

THIS TALK: 

▸ Examine a class of QFTs known to be integrable on Minkowski space.  

▸ Show that on dS background these thys retain class of charges with powerful Ward 
identities. 

▸ Suggests certain features of dS thy might be integrable (asymptotic correlations 
functions? dS S-matrix? dS corrections to effective mass?)

Solving exact problem approximately

Solving approximate problem exactly
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A CLASS OF INTEGRABLE MODELS
▸ Consider nonlinear sigma model on dS2 w/ target space a symmetric 

space (classical group G) 
 
 
Fundamental field                        is spacetime metric. E.g.,  

▸ Theory has many symmetries! 

▸ Noether currents of L and R global group transformations  
 
 
 
 

▸ “Flatness condition”
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CHARGES AND THE MINKOWSKI S-MATRIX
▸ One way to obtain S-matrix for our thys is by exploiting Ward 

identities associated with (unusual) conserved charges. 

▸ Local higher-spin charges relates N-to-N scattering to products of 2-
to-2 scattering. 
 
 
 
 
 
 

▸ “First non-local charge” Q(1) yields relations between 2-particle states, 
determines 2-to-2 scattering.
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The key point here is that the S-matrix must commute with these charges, and this
greatly constrains the S-matrix. Consider the unitary action of these charges on a wavepacket
describing an initial 1-particle state.
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�⇥
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s
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By evaluating the momentum integral one can see that e�ect is to move the center of the
wavepacket in position space by an amount determined by it’s momentum. In other other
words, the action of the charge can change the impact parameter of an incoming wavepacket
while keeping it’s momentum relatively unchanged. As a result, when you have local, higher
spin symmetries your S-matrix must be invariant under changes of the impact parameter.

This is a very strong restriction on an S-matrix. When the number of spatial dimensions
is greater than 1 and a theory posesses local higher spin charges one can use the action of
these charges to tranform two incomping wavepackets for which their classical trajectories
initially cross to wavepackets whose classical trajectories miss eachother. This leades to
the heuristic argument of the Coleman-Mandula theorem. The only S-matrix which can be
invariant under such drammatic changes to impact parameters is a trivial S-matrix.

4.3.2 2: local HS charges (pictures)

In two dimensions the wave packets still collide, so we don’t neccessarily have a trivial S-
matrix. To start things o�, note that in two spacetime dimensions conservation of momentum
requires that for 2 � 2 scattering the incoming and outgoing pair of momenta must be equal
– there is no momentum exchange, i.e. 2 � 2 processes are elastic. Conservation of energy
assures us that there is no net particle production.

Now consider these three graphs:
Plotted here are the classical trajectories of wave-packets. Using higher spin charges we

can deform any of these graphs to any other, so they must give the same scattering amplitude.
The fact the first graph is equivalent to the second tells us that the 3 � 3 process factorizes
into a product of 2 � 2 reactions. The fact that the remaining two diagrams are equivalent
gives the relation

S(k1, k2, k3) = S(k1, k2)S(k1, k3)S(k2, k3) = S(k2, k3)S(k1, k3)S(k1, k2) (4.7)

According to Wikipedia this is the Yang-Baxter equation. To keep things simple, just note
that the presence of higher-spin charges implies that the S-matrix factorizes into products of
2 � 2 reactions, and furthermore that di�erent choices of factorization must be equivalent.
This latter property imposes severe restrictions on the form of the 2 � 2 S-matrix.
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time Yang-Baxter Eqn.

[Luscher, Parke, Shankar Witten, Abdalla et. al., …]
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DE SITTER SPACETIME

▸ de Sitter radius 

▸ dS2 Killing vectors: 

▸ translation 

▸ dilation 

▸ SCT 

▸ Flatspace limit:
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LOCAL HIGHER SPIN CHARGES

▸ HS charges transform as tensor 
component under dS transformations. 
They enlarge isometry algebra in an 
interesting way. 

▸ Upon quantization anomalies can spoil 
conservation laws. 

▸ Anomaly counting arguments suffice to 
prove existence of currents in quantum 
theory. 

▸ Conclusion: on dS at least one spin-4 
current survives quantization for all 
classical groups.
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[Goldschmidt Witten, Evans et. al]
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NON-LOCAL CHARGES
▸ “Flatness condition” assures dB=*j  

may be integrated 
 

▸ B(x) has non-trivial braid relations with with field 

▸ Using B(x) may construct non-local current:  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NON-LOCAL CHARGES
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▸ Composite operator in 2nd term must be renormalized. Use OPE: 
 

▸ Conclusion: Q(1) survives quantization, renormalized charge is conserved. 
This requires finite, dS counterterms.  

▸ Algebra w/ dS charges: 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CONCLUSION
SUMMARY: 

▸ Examined non-linear sigma model w/ classical group target spaces on dS 
background. 

▸ Shown that certain local higher-spin charges, as well as the “first” non-local 
charge, are preserved in dS quantum thy. 

▸ These charges are members of large families of charges; our results imply some 
of these charges also survive quantization. 

BIG QUESTION: 

▸ In Minkowski, Ward identities associated with these charges are sufficient to 
solve for S-matrix. 

▸ In dS, are the Ward identities strong enough to determine asymptotic 
correlation functions? (Late-time correlators, correlations between future and 
past infinity)
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