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Lovelock’s theorem (1971)

Einstein’s equation:

Gab + Λgab = 8πTab

LHS is most general symmetric tensor that is

I a function of g , ∂g , ∂2g

I divergence-free

This assumes d = 4 dimensions. For d > 4, extra terms can
appear on LHS. These were determined by Lovelock.



Lovelock theories

Eab = 8πTab

E a
b ≡

∑
p≥0

kpδ
ac1...c2p
bd1...d2p

Rc1c2
d1d2 . . .Rc2p−1c2p

d2p−1d2p

Antisymmetry: p ≤ [(d − 1)/2]

k0 = Λ k1 = −1

4

Einstein equation is obtained if we demand linearity in ∂2g , i.e.,
quasilinearity. General Lovelock theories are not quasilinear.



Why should I care about Lovelock theories?

I Wave equation �φ = 0: can be (i) generalised to d
dimensions; (ii) made nonlinear �φ = F(φ, ∂φ, ∂2φ). There
has been considerable interest in understanding such
equations. Doing the same for Einstein equation gives
Lovelock theories uniquely.

I Interesting mathematical question: how do properties of such
theories differ from GR? Is GR special? Are Lovelock theories
pathological in some way?



Causality in Lovelock theories

Causality of a PDE is determined by its characteristic surfaces.

In GR, a hypersurface is characteristic if, and only if, it is null so
causality is determined by the lightcone.

Characteristic hypersurfaces of Lovelock theories are generically
non-null (Aragone 1987, Choquet-Bruhat 1988) so gravity can
propagate faster or slower than light

How do characteristic hypersurfaces behave in Lovelock theories?

Are Lovelock theories hyperbolic? (Necessary for well-posed initial
value problem.)

We investigated this by looking at some particular solutions.



Ricci flat type N

Type N: ∃ null `a such that `aCabcd = 0 (e.g. pp-wave).
Solves Lovelock eq. of motion with Λ = 0.
A hypersurface is characteristic iff it is null w.r.t. one of
d(d − 3)/2 ”effective” Lorentzian metrics G(I )ab.

I Null cones of G(I )ab form a nested set, tangent along `a,
causality determined by outermost cone

I Lovelock theories are hyperbolic in such backgrounds for
arbitrarily large curvature, i.e., have the ”right number” of
characteristic surfaces



Static black holes

Lovelock theories admit static, spherically symmetric, solutions
(Boulware & Deser 1985, Wheeler 1986)

ds2 = −f (r)dt2 + f (r)−1dr2 + r2dΩ2

Characteristic hypersurfaces determined by two-derivative terms in
eqs for linear perturbations (Dotti & Gleiser 2004-5, Takahashi & Soda

2009)

Linear perturbations can be classified into scalar, vector or tensor
types; for each type there is an ”effective metric”. A surface is
characteristic iff it is null w.r.t. one of these effective metrics.
(NB: effective metrics non-generic!)



Static black holes

Large black hole (small curvature):

I Effective metrics Lorentzian, null cones form nested set
outside event horizon ⇒ equation of motion hyperbolic.

I Null cone of an effective metric can lie outside null come of g
(gravity travels faster than light)

Small black hole: an effective metric can change signature near
event horizon ⇒ violation of hyperbolicity

Lovelock theories are not always hyperbolic: depends on
background.



Dynamical hyperbolicity violation

Can one set up initial data so that theory is initially hyperbolic but
becomes non-hyperbolic after some time?

Yes: consider large black hole: hyperbolicity violated to future of
spacelike surface Σ inside black hole.

Is this generic? Generic linear perturbations cannot be evolved to
future of Σ. Suggests nonlinear instability may ensure preservation
of hyperbolicity (cf strong cosmic censorship). (G. Papallo)



Shock formation

”Speed of gravity” in Lovelock theories can vary in spacetime.

Can we make a wavepacket so that back of wavepacket travels
faster than front?

cf compressible perfect fluid: speed of sound depends on pressure
⇒ wave steepening ⇒ shock!

We argued that this does indeed happen in Lovelock theories, but
probably not at small curvature.

Resulting shocks would be naked but it may be possible to develop
a theory of shock evolution, as for perfect fluid.



Future work

Local well-posedness of Lovelock theories for small curvature.

Nonlinear stability of Minkowski spacetime.

Generalization for d = 4 Horndeski theories.


