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Why quantum? 
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de Broglie wavelength of 40kg test mass: 

Displacement Sensitivity of Advanced LIGO: 

Laser interferometric gravitational-wave (GW) detector: 

aLIGO Test Mass 
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Quantum limited Advanced LIGO 
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Advanced LIGO design sensitivity curve: 

noise spectrum For known  
GW waveform: 
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Standard Quantum Limit:  

Quantum noise & Standard Quantum Limit 

Shot noise 

Radiation  
pressure noise 

Quantum fluctuation in phase quadrature 

In amplitude quadrature 

Test 
Mass 

Optical 
Field 

GW 
tidal force 

Power 
fluctuation 
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Detuned signal recycling (SR) 
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One interpretation [1]: optical spring effect (“self-force”) 

[1] A. Buonanno and Y. Chen. Signal recycled laser-interferometer gravitational-wave 
detectors as optical springs,  PRD 65, 042001 (2002). 

Signal recycling 
mirror (SRM) 

Time domain 
Frequency 

domain 
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amplitude 

Ph
as

e 

squeezer 

Frequency-dependent squeezing 
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[1] J. Kimble, et al. Conversion of conventional GW interferometers into QND 
      by modifying their input and/or output optics,  PRD 65, 022002 (2001) 
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Speed meter 
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Interpretation: measuring conserved quantity—Momentum 
 

Equivalent view: cancelling radiation pressure (back action) noise 

[1] P. Purdue, and Y. Chen. Practical speed meter designs for quantum nondemolition 
     gravitational-wave interferometers,  PRD 67, 122004 (2002).  
[2] Y. Chen, Sagnac interferometer as a speed-meter-type, quantum-nondemolition 
     gravitational-wave detector, PRD 67, 122004 (2003).  

GR 21 



Frequency-dependent (variational) readout 
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Coherent cancelation of radiation pressure noise by measuring proper  
quadrature at different frequencies [1] or using “negative mass” [2, 3].  

[1] J. Kimble et al., PRD 65, 022002 (2001). 
[2] M. Tsang, and C. Caves, Coherent Quantum-Noise Cancellation for Optomechanical    
      Sensors, PRL 105, 123601 (2010). 
[3] M. Wimmer et al., Coherent cancellation of backaction noise in optomechanical 
      force measurements, PRA 89, 053836 (2014). 
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Shot-noise-only sensitivity 
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For frequency around it:  

Feedback changes sign 

Signal resonant condition:  

Peak sensitivity and bandwidth tradeoff 

(only at one frequency) 
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Given different  
SRM 

reflectivity 



Improving sensitivity-bandwidth product 
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White-light-cavity idea using atomic medium or unstable filter: 

Ideally: 

Round-trip phase: 

or 

Resonant condition is satisfied for broad frequency band 

Negative 
dispersion 
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Resulting shot-noise limited sensitivity 
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With negative 
dispersion filter 
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Fundamental Quantum Limit 
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Initial quantum  
state of detector 

(Interaction) 

Final state 

In terms of quantum uncertainty: 

Detecting GW as parameter estimation:  

Quantum counterpart of the classical Cramér-Rao bound  

Minimal detectable signal depending on distinguishability of two states 

[1] C. Helstrom Physics Letters A 25, 101 (1967). 
[2] A. Holevo, Probabilistic and Statistical Aspects of Quantum Theory (1982). 
[3] S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72, 3439 (1994). 
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Fundamental Quantum Limit 
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[1] V. Braginsky, M. Gorodetsky, F. Khalili, and K. Thorne, Energetic quantum limit  
      in large-scale interferometers, AIP Conference Proceedings 523, 180 (2000).  

Two equivalent pictures: 

[2] M. Tsang, H. Wiseman, and C. Caves, Fundamental Quantum Limit to  
     Waveform Estimation, Phys. Rev. Lett. 106, 090401 (2011). 

(Local Inertial Frame)  

(TT Frame)  

In terms of noise spectrum, both give: 
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Condition for achieving the minimum 
The minimum: 

[1] H. Miao, R.  Adhikari, Y. Ma,  and Y. Chen, LIGO-DCC: P1600092 (2016) [arXiv soon]    

General condition for achieving it: 

1. Upper & lower sidebands  
contribute equally  to power  
fluctuation. What if not? 

2. Homodyne detection of 
proper output quadrature. 
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No optical loss (loss issue is under study) 
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Example of tuned signal recycling 
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FQL is achieved by using 
frequency-dependent 
(variational) readout.  



Example of detuned signal recycling 

19 GR 21 

FQL is close to that of 
frequency-dependent 
(variational) readout 
but not exact.   
[1] H. Miao, R.  Adhikari, Y. Ma,  and Y. Chen, LIGO-DCC: P1600092 (2016)  
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How to lower the fundamental limit 

What determines                             

 Optical power 

 External phase squeezing if any 

 Built-in ponderomotive squeezing! 

Amplitude 
fluctuation 

Phase 
fluctuation 

Test mass 
motion 

Usually does not modify  
power fluctuation 

(i.e. amplitude fluctuation) 

One-way 
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A new perspective on optical spring 
Detuned signal recycling: 

Coherent optical feedback: 

Amplitude  
fluctuation 

Phase 
fluctuation 

Test mass 
motion 

is very large. 

detuning 

detuning 
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Coherent optical feedback 
Include ponderomotive squeezing as a part of the design: 

Amplitude 
fluctuation 

Phase 
fluctuation 

Test mass 
motion 

Optical 
filters 

large over broad frequency 
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“Zero” or “No” limit 
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One example (preliminary) 
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One passive filter to flatten  
the gain from pondermotive 
squeezing. Two unstable filters 
to compensate the phase.  

Ideal lossless case 

SRM 
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One example (preliminary) 
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Quantum noise modelling 
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Model: a continuous quantum measurement process 

Test mass: quantum harmonic oscillator  

Optical field: quantum field 

GW: classical tidal force 

Photodetector: projective measurement 
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Quantum noise modelling 
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Quantization of optical field:  

Field “position”: Phase quadrature 

Field “momentum”: Amplitude quadrature 

amplitude 

Ph
as

e 

Satisfying 
Heisenberg Uncertainty 

Relation 

Quantization of test mass (center-of-mass motion): 

A quantum harmonic oscillator (~ a free mass)  
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Beyond Advanced LIGO 
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Future upgrades 

(now) 

aLIGO 

aLIGO Plus 

2020 2025 2030 2015 

Design study Installation 

Data taking 

LIGO Voyager (current facility) 

 Cosmic Explorer (new facility) 

Experiments 

LIGO Scientific Collaboration, Instrument Science White Paper (2014-2015) 
Reference:  
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White-light-cavity using atomic medium 
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For usual mediums at low frequencies: 

Around absorption (attenuation) line (Kramers-Kronig relation): 

 positive (normal) dispersion 

Dispersion of medium: 
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For usual mediums at low frequencies: 

Around absorption (attenuation) line (Kramers-Kronig relation): 

 positive (normal) dispersion 
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White-light-cavity using atomic medium 
Dispersion of medium: 



White-light-cavity using atomic medium 

vi 

Instead using active gain medium: 

Pump 

[1] A. Wicht et al., White-light cavities,  
atomic phase coherence, and GW detectors,   
Optics Communications (2000). 
[2] M. Zhou, Z. Zhou, and S. M. Shahriar. 
Quantum noise limits in white-light-cavity 
enhanced gravitational wave detectors.  
Phys. Rev. D 92, 082002 (2015) 
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An example[1]: 

(not constrained by Kramers-Kronig relation) 

[1] H. Miao, Y. Ma, C. Zhao and Y. Chen, Enhancing the bandwidth of gravitational 
      wave detectors with unstable optomechanical filters, PRL 115, 211104 (2015) 

General cases: 

White-light-cavity using unstable filter 
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Unstable optomechanical filter 
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Thermal noise issue: 



Fundamental Quantum Limit 

ix 

Derivation using linear quantum measurement theory: 

Shot noise 

Test 
Mass 

Optical 
Field 

GW 
tidal force 

Radiation pressure noise 

h-referred noise spectrum (                                                            ): 

Correlation between two noises 

Heisenberg Uncertainty Principle: 
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Fundamental Quantum Limit 

x 

No correlation                 : Standard Quantum Limit (SQL) 

With correlation                 : Fundamental Quantum Limit 

Heisenberg Uncertainty Principle: 
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