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. . . . . .


.. Defining linear stability


Linear vacuum Einstein equation with cosmological constant (LEE)


E[δgαβ ] := − 1
2∇


γ∇γδgαβ − 1
2∇α∇β(gγδδgγδ) +∇γ∇(αδgβ)γ − Λ δgαβ = 0


We are interested in equivalence classes [δgαβ ] of slns mod gauge transformations:


δgαβ ∼ δgαβ +∇αξβ +∇βξα


.


......


Rough stability idea: The outer region of a stationary black hole is linearly stable if
linear metric perturbations do not grow unbounded.
Expectation: perturbed Kerr BH metrics decay to a nearby Kerr BHs.


.


......


• If Λ ≥ 0 both II and II ∪ II′ ∪ I ∪ I′ are globally hyperbolic.
• If Λ < 0 boundary conditions have to be specified at the conformal timelike


boundary and there are instabilities if some Robin boundary conditions are
chosen.


I


IIII'


I'


I


II


I'


II'


Zero or positive cosmological constant Negative cosmological constant


Carter-Penrose diagram: II outer static region; I: inner non static region
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. . . . . .


.. Modal approach: i) solving the LEE


gαβdzαdzβ︸ ︷︷ ︸
∇α, ϵαβγδ


= gab(x)dxadxb︸ ︷︷ ︸
orbit space: Dc , ϵab


+ r2(x)ĝij (y)dy i dy j︸ ︷︷ ︸
S2: D̂k , ϵij


=


︷ ︸︸ ︷
−f (r)dt2 +


dr2


f (r)
+r2


︷ ︸︸ ︷
(dθ2 + sin2(θ) dϕ2)


J2 =
3∑


k=1


(£Jk )
2, (J3 = ∂ϕ, etc ) and P : (t , r , θ, ϕ) → (t , r , π − θ, ϕ+ π)


.


......


δgαβ =
∑


p=±,ℓ,m


δg(ℓ,m,p)
αβ where J2δg(ℓ,m,±)


αβ = −ℓ(ℓ+ 1)δg(ℓ,m,±)
αβ


even (+) and odd (-) modes P∗δg(ℓ,m,±)
αβ = ±(−1)ℓδg(ℓ,m,±)


αβ


ℓ ≥ 2 LEE equivalent to infinite set of 1+1 wave eqns: gabDaDbϕ
±
(ℓ,m)


− U±
ℓ ϕ±


(ℓ,m)
= 0︸ ︷︷ ︸


LEE for ℓ≥2modes
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. . . . . .


.. Modal approach: i) solving the LEE


odd modes (p = −) even modes (p = +)


ℓ = 0 δM shift within Kerr family


ℓ = 1 δj(k) shift within Kerr family


ℓ ≥ 2 δg(ℓ,m,−)
αβ = D(−)


αβ [ϕ−
(ℓ,m)


,S(ℓ,m)] δg(ℓ,m,+)
αβ = D(+)


αβ [ϕ+
(ℓ,m)


,S(ℓ,m)]


.


......


S(ℓ,m) are spherical harmonics: ĝ ij D̂i D̂jS(ℓ,m) = −ℓ(ℓ+ 1)S(ℓ,m),


ϕ±
(ℓ,m) are solutions of 2D wave eqns: gabDaDbϕ


±
(ℓ,m) − U±


ℓ ϕ±
(ℓ,m) = 0︸ ︷︷ ︸


LEE for ℓ≥2modes


.


......


Generic perturbations parametrized by gauge invariant fields and constants:
δM, δj (k) (constants read from initial datum) and ϕ±


(ℓ,m) (dynamical fields)
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. . . . . .


.. Odd sector non modal approach: linear stability


• Standard approach to stability problem consists on setting bounds on the infinite
set of fields ϕ(ℓ,m)(t , r)


• Up to 2 derivatives of these fields enter δgαβ , thus 4 derivatives in δRα
βγδ .


• Any geometric implies
∑


(ℓ,m)


• Implications of the boundedness (either integral or pointwise) of the ϕ±
(ℓ,m)


on the
perturbed geometry not obvious a priori


• Look to parametrize the space L of linearized solutions of the Einstein’s
equations around Schwarzschild de Sitter BH with geometrical fields as an
alternative to


L = {δM, δj(k), ϕ±
(ℓ,m)


}


• Need to estimate the growth of these fields in order to analyze stability


RW equation and 4D-RW equation:


ℓ ≥ 2 LEE ⇔


RW equation︷ ︸︸ ︷[
∂2


t − ∂2
r∗ + f


(
ℓ(ℓ+1)


r2 − 6M
r3


)]
ϕ−
(ℓ,m)


= 0, D̂k D̂k S(ℓ,m) = −ℓ(ℓ+1)S(ℓ,m)


⇔
[
∇α∇α +


8M
r3 −


2Λ
3


]
Φ = 0︸ ︷︷ ︸


4D RW equation]


Φ =
∑


(ℓ≥2,m)


ϕ−
(ℓ,m)


r
S(ℓ,m)
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. . . . . .


.. Odd sector non modal approach: perturbed curvature scalars


We consider the effect of a perturbation on the curvature scalars:


Q− = 1
48


∗CαβγδCαβγδ, Q+ = 1
48 CαβγδCαβγδ, X = 1


720


(
∇ϵCαβγδ


) (
∇ϵCαβγδ


)
.


The background values are:


Q−S(A)dS = 0, Q+S(A)dS =
M2


r6 , XS(A)dS =
M2


r9 (r − 2M)−
ΛM2


3r6


.


......


This implies that the following fields are gauge invariant:


G− = δQ− and G+ = (9M − 4r + Λr3)δQ+ + 3r3δX


.


......


G− = G−[δg(−)], this functional depends on up to four derivatives of the ϕ−
(ℓ,m)


.


Using repeatedly the LEE we arrive at: (recall that L = {


odd︷ ︸︸ ︷
δj(k), ϕ−


(ℓ,m)
,


even︷ ︸︸ ︷
δM, ϕ+


(ℓ,m)
})


G− = −
6M
r7


√
4π
3


3∑
m=1


δj(m)S(1,m) −
3M
r5


∑
(ℓ≥2,m)


(ℓ+2)!
(ℓ−2)!


ϕ−
(ℓ,m)


r S(ℓ,m)


︸ ︷︷ ︸
J2(J2+2)Φ
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. . . . . .


.. Odd sector non modal approach: linear stability


.


......


G− = −
6M
r7


√
4π
3


3∑
m=1


δj(m)S(1,m) −
3M
r5


∑
(ℓ≥2,m)


(ℓ+2)!
(ℓ−2)!


ϕ−
(ℓ,m)


r S(ℓ,m)


.


......


From G− we can recover (δj(m), ϕ−
(ℓ,m)


) and therefore δg(−)
αβ in a given gauge


All the gauge invariant information in δg(−)
αβ is encoded in G−


[δg(−)
αβ ] → G−


(
[δg(−)


αβ ]
)


is a bijection


.


......
Odd LEE are entirely equivalent to


[
∇α∇α + 8M


r3 − 2Λ
3


]
(r5G−) = 0!!! (4DRWE)


.


......


Boundedness: For any smooth solution of the odd LEE which has compact support on
Cauchy surfaces of the extended I ∪ II ∪ I′ ∪ II′ Schwarzschild (Schwarzschild de
Sitter) BH, there exists a constant K− such that |G−| < K− r−6 for r > rh (rh < r < rc )


.


......


Decay: For large t Price/Brady tails give a slowly rotating Kerr/dS BH:


G− ≃ − 6M
r7


√
4π
3


∑3
m=1 δj(m)S(1,m)
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. . . . . .


.. Even perturbations: difficulties for a 4D approach


1) For odd perturbations


ℓ ≥ 2 odd LEE ⇔ [∂2
t


H−
ℓ


(RW Hamiltonian)︷ ︸︸ ︷
−∂2


r∗ + f
(


ℓ(ℓ+1)
r2 − 6M


r3


)
]ϕ−


(ℓ,m)
= 0, D̂k D̂k S(ℓ,m) = −ℓ(ℓ+1)S(ℓ,m)


⇔
[
∇α∇α +


8M
r3 −


2Λ
3


]
Φ = 0︸ ︷︷ ︸


4D RW equation]


Φ =
∑


(ℓ≥2,m)


ϕ−
(ℓ,m)


r
S(ℓ,m)


2) For even perturbations the 2D Zerilli wave equation is not related to a 4D equation:


H+
ℓ = −∂2


r∗ + f V Z
(ℓ,m) (Zerilli Hamiltonian)


with potential (µ = (ℓ− 1)(ℓ+ 2))


V Z
(ℓ,m) =


[µ2ℓ(ℓ+ 1)− 24M2Λ]r3 + 6µ2Mr2 + 36µM2r + 72M3


r3 (6M + ((ℓ− 1)(ℓ+ 2))2r)2 .
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. . . . . .


.. Even perturbations: difficulties for a 4D approach


3) For odd perturbations there is a gauge invariant scalar related to the perturbed Weyl
tensor (thus expected to satisfy some kind of wave equation)


G− = δQ− = δ
(


1
48


∗CαβγδCαβγδ


)
4) For even perturbations we need to use differential invariants to construct curvature
related gauge invariant perturbation fields. The simplest such field is


G+ = G+ = (9M − 4r + Λr3)δQ+ + 3r3δX


Q+ = 1
48 CαβγδCαβγδ , X = 1


720


(
∇ϵCαβγδ


) (
∇ϵCαβγδ


)
.


These are not expected to satisfy wave equations as a consequence of the LEE !
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. . . . . .


.. Even perturbations: Chandrasekhar’s even ↔ odd duality


Chandrasekhar (80’s) found that


H±
ℓ = D±


ℓ D∓
ℓ − Eℓ


2, D±
ℓ = ±


∂


∂r∗
+ Wℓ(r)


.


......


D+
ℓ maps solutions of the odd (RW) equations to solutions of the even (Z) equation:


(∂2
t +H−


ℓ )ϕ−
(ℓ,m)


= 0 ⇒ (∂2
t +H+


ℓ )(D
+
ℓ ϕ


−
(ℓ,m)


) = 0


• The general solution of the differential equation D+
ℓ χ = 0 is a constant times


χ−
ℓ =


(ℓ+ 2)(ℓ− 1)r + 6M
r


exp(−wℓ r∗) ̸∈ L2(R, dr∗)


• This implies that D+
ℓ : L2(R, dr∗) → L2(R, dr∗) is injective (also in more general


spaces, since the above sln blows up at the BS).


.


......


Assume Λ ≥ 0. For any solution ϕ+
(ℓ,m)


of the ZE in L2(Rr∗ , dr∗) there is a unique


solution ϕ−
(ℓ,m)


of RWE in L2(Rr∗ , dr∗) such that ϕ+
(ℓ,m)


= D+
ℓ ϕ


−
(ℓ,m)


.
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. . . . . .


.. Even perturbations: Non modal stability


.


......


G+ = −
2MδM


r5 +
M


2r4


∑
ℓ≥2


(ℓ+ 2)!
(ℓ− 2)!


[f∂r + Zℓ]ϕ
+
(ℓ,m)


S(ℓ,m), Zℓ = Zℓ(r)


.


......


From G+ we can recover (δM, ϕ+
(ℓ,m)


) and therefore δg(+)
αβ in a given gauge


All the gauge invariant information in δg(+)
αβ is encoded in G+


[δg(+)
αβ ] → G+


(
[δg(+)


αβ ]
)


is a bijection


G+ = −
2MṀ


r5
+


M


2r3


∂
2
t Φ5 +


4∑
j=0


r−jΦj +
f (r − 3M)


r3
Φ5 +


f


r
Φ6


 +
M


2r3
∂r∗Φ6 +


M(r − 3M)


2r5
∂r∗Φ5,


(using Chandra’s duality) Φj =
∑


(ℓ≥2,m)


Pj (ℓ)
ϕ
−
(ℓ,m)


r S(ℓ,m), j = 0, ...6 satisfy the 4DRWE !!!


.


......


Boundedness: For any smooth solution of the odd LEE which has compact support on
Cauchy surfaces of the extended I ∪ II ∪ I′ ∪ II′ Schwarzschild (or Schwarzschild de
Sitter) BH, there exists a constant K+ such that |G+| < K+ r−3 for r > rh (rh < r < rc )
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. . . . . .


.. Summary
.


......


• All gauge invariant perturbation info contained in scalar
curvature perturbation fields


G− = − 6M
r7


√
4π
3


3∑
m=1


δj(m)S(1,m) −
3M
r5


∑
(ℓ≥2,m)


(ℓ+2)!
(ℓ−2)!


ϕ−
(ℓ,m)


r S(ℓ,m)


G+ = −
2MδM


r5 +
M


2r4


∑
ℓ≥2


(ℓ+ 2)!
(ℓ− 2)!


[f∂r + Zℓ]ϕ
+
(ℓ,m)


S(ℓ,m)


• [δgαβ] → (G−([δgαβ]),G+([δgαβ])) is a bijection


• LEE entirely equivalent to 4D RW equation !


• Perturbations are bounded in the outer region:


|G−| ≤ K−/r6, |G+| ≤ K+/r3


• For large t we get decay within Kerr/ds family:


G− ≃ − 6M
r7


√
4π
3


3∑
m=1


δj(m)S(1,m), G+ ≃ −
2MδM


r5
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