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Defining linear stability

Linear vacuum Einstein equation with cosmological constant (LEE)
E[6Gap] == =3V V200as — 3VaV5(97°0955) + V7V (a0gs)y — A 6gas = 0
We are interested in equivalence classes [dg, ] of sins mod gauge transformations:
09ap ~ 09ap + Vaés + Véa

linear metric perturbations do not grow unbounded.

Rough stability idea: The outer region of a stationary black hole is linearly stable if
Expectation: perturbed Kerr BH metrics decay to a nearby Kerr BHs. J




Defining linear stability

Linear vacuum Einstein equation with cosmological constant (LEE)
E[0Gap] = =3V V0905 — 3VaVs(97°89ys) + VIV (0095), — A 3gas =0
We are interested in equivalence classes [dg, ] of sins mod gauge transformations:
09ap ~ 09ap + Vaés + Véa

Rough stability idea: The outer region of a stationary black hole is linearly stable if
linear metric perturbations do not grow unbounded.
Expectation: perturbed Kerr BH metrics decay to a nearby Kerr BHs.

e [fA>0both //and /lU II' U U I' are globally hyperbolic.

® |f A < 0 boundary conditions have to be specified at the conformal timelike
boundary and there are instabilities if some Robin boundary conditions are

chosen.

Carter-Penrose diagram: |l outer static region; I: inner non static region

Zero or positive cosmological constant Negative cosmological constant 2/11



Modal approach: i) solving the LEE

Gapdz®dz® = gap(x)dx?dx® + r2(x)3;(y)dy'dy!

N ——
Va, €afrys orbit space: Dg, €gp S2: Dy, o
r—’—
dr? ’ . .
= —f(r)dt® + " +12 (d6? + sin®(9) d¢?)

=) "(£4)% (=0, etc) and P:(t,r,0,¢)— (t,r,m—0,6+m)

890p = Z 6g(2 ™P) where J26g(2 ME) — g6 + 1)59“ 1)
p==,4,m

even (+) and odd (-) modes P. 5g“ ") = £(=1)eglym>

¢ > 2 LEE equivalent to infinite set of 1+1 wave egns: gabDanqﬁ(ﬂ; Uf¢( o =0

LEE for £>2modes




Modal approach: i) solving the LEE

‘ odd modes (p = —) ‘ even modes (p = +) ‘
=0 oM shift within Kerr family
=1 | §j() shift within Kerr family
(&;m,—=) _ (=) — (&;m+) _ p+)
£>2 ‘ 690,[3 - Daﬁ [(b(i,m)’ S(Z,m)] ‘ 690,/3 - Da[a [(b(?,m)’ S(l,m)] ‘

S(e,m) are spherical harmonics: §D;0;S(; m) = —£(¢ + 1)Se.m),

(s m are solutions of 2D wave eqns: g% DaDed(; m — Uy ¢y m = 0

LEE for £>2modes

Generic perturbations parametrized by gauge invariant fields and constants:
M, 5] (constants read from initial datum) and ¢; , (dynamical fields)




Odd sector non modal approach: linear stability

® Standard approach to stability problem consists on setting bounds on the infinite
set of fields ¢y, m)(t, 1)

® Up to 2 derivatives of these fields enter 6g., thus 4 derivatives in §R% gs.

® Any geometric implies Z(&m)

® |mplications of the boundedness (either integral or pointwise) of the r,b(j;_m) on the
perturbed geometry not obvious a priori '

® | ook to parametrize the space L of linearized solutions of the Einstein’s
equations around Schwarzschild de Sitter BH with geometrical fields as an
alternative to

£ ={M, 50,6 .}
® Need to estimate the growth of these fields in order to analyze stability

RW equation and 4D-RW equation:

RW equation
0> 21LEE & [07 - 02 +1 (450 — &) ] o, ) =0, D*DiS(em = —€(l+1)S(em)
. 8M 2A P (¢, m)
o {vav +r—37?}¢:0 o= > = Sie.m)

(€=2,m)

4D RW equation]



Odd sector non modal approach: perturbed curvature scalars

We consider the effect of a perturbation on the curvature scalars:
Q- = 5 COCupys,  Qp = §5C 1 Coss, X = 3k (VeCapys) (VC7).

The background values are:

2

M M2 AM?
Q-s(apas =0, Qisaos = 5> Xsayas = g (r—2M) —

36

This implies that the following fields are gauge invariant:

G- =6Q- and Gi = (IM—4r+Ar®)5Q; +3r36X

G- = G_[6g()], this functional depends on up to four derivatives of the ¢(‘e’m).
odd even
—N—— ——
Using repeatedly the LEE we arrive at: (recall that £ = {6;(¥), Pe.my OMs by 1y 1)

6M 4 3M (£+2)! [
G- = 7 V3 & 25/( Stt,m) = > 2!

m=1 (222,m)

J2(J242)0




Odd sector non modal approach: linear stability

M [4x 3M cr2) @
G-=-737V73 25/( Stt,m) = DN

m=1 (222,m)

From G_ we can recover (5j(™), d)(‘[ m)) and therefore 69((1;) in a given gauge
All the gauge invariant information in (Sggfd) is encoded in G
[6g ] — G_ ([(Sg&_ﬁ)]) is a bijection

Odd LEE are entirely equivalent to [Vava + 55 — —} (r°G-) =0!ll (4DRWE)

Cauchy surfaces of the extended TUTTU I’ U TI" Schwarzschild (Schwarzschﬂd de
Sitter) BH, there exists a constant K_ such that |G_| < K_ r=8forr > r, (r, < r < rc)

Decay: For large t Price/Brady tails give a slowly rotating Kerr/dS BH:

~ GM 471'

Boundedness: For any smooth solution of the odd LEE which has compact support on J
—1 5™ S(1,m) J




Even perturbations: difficulties for a 4D approach

1) For odd perturbations

H, (RW Hamiltonian)

¢>20dd LEE < [07 02 +f ({51 — M)jor, =0, DKDLS(e m) = —E(t+1)S(e.m

. 8M 2A Ple,m)
o M | MR Y .
(£>2,m)

4D RW equation]

2) For even perturbations the 2D Zerilli wave equation is not related to a 4D equation:
Hy =02 +f Vé m (Zerilli Hamiltonian)
with potential (u = (¢ — 1)(£ + 2))

[12€(L + 1) — 24MPAJr® + 6uPMr? + 36uM?r 4 72M8

V(i ) = 3
E,m r3 (6M + ((£ — 1)(£ + 2))2r)?




Even perturbations: difficulties for a 4D approach

3) For odd perturbations there is a gauge invariant scalar related to the perturbed Weyl
tensor (thus expected to satisfy some kind of wave equation)

G_=06Q_=6 (gfs*caﬁvécam)

4) For even perturbations we need to use differential invariants to construct curvature
related gauge invariant perturbation fields. The simplest such field is

Gy = Gy = (M — 4r + Ar?)6Q, + 3r36X
0

Qi = 4569 Caprs, X = 7l (VeCagns) (VC27).

These are not expected to satisfy wave equations as a consequence of the LEE !



Even perturbations: Chandrasekhar's even « odd duality

Chandrasekhar (80’s) found that

1o}
ar*

Hf =DFDf — E®, Dy =£—— + W(r)

Dzr maps solutions of the odd (RW) equations to solutions of the even (Z) equation:

(0F +Hy )b m = 0= (OF + HI)(DF by m) =0

® The general solution of the differential equation DZX = 0 is a constant times

g = R M oo ) ¢ 2w ar)

® This implies that DZ : L2(R, dr*) — L%(R, dr*) is injective (also in more general
spaces, since the above sin blows up at the BS).

Assume A > 0. For any solution ¢>& ) of the ZE in L2(R,«, dr*) there is a unique
solution ¢, ., of RWE in L2(R+, dr*) such that ¢(*2’m) = D;¢(‘e,m).



Even perturbations: Non modal stability

G=

2M6M M Z (¢ +2)!

2,-4 g 2)' [far + Zﬂ] ¢&7m)8(57m), Zy = Z[(I’)

From G, we can recover (6M, ¢>+ ) and therefore 6g(+ﬁ) in a given gauge

All the gauge invariant mformatlon in bg(”

69531 — Gy ([6ga ﬁ]) is a bijection

is encoded in G+

G 2MM+M B +i o =M o Tl M s+
- “ e, + ML) ! “
+ 5 23 t ¥5 = 'j 3 5 ; 6 23 rx Pg

M(r — 3M)
2r5

Opx &5,

(using Chandra’s duality) ®; = Z P((i)
(£>2,m)

S(; m)> J=0,...6 satisfy the ADRWE Il

Cauchy surfaces of the extended TU ITU I’ U I’ Schwarzschild (or Schwarzschild de

Boundedness: For any smooth solution of the odd LEE which has compact support on
Sitter) BH, there exists a constant K such that |G| < Ky r=8for r > ry (r, < r < ro) J

10/11



e All gauge invariant perturbation info contained in scalar
curvature perturbation fields

3M o

47 (e+2)! Pe,m)

\/ Z & - > =2y~ Se.m)
(Z>2,m)

2M6M

(¢ +2)!
G+ = — r5 2[‘4 DZZ [ 2)' [far +Z£] ¢ ﬁ m)S(e m

* [0gas] = (G-([09as]), G+([6gas])) is a bijection
e LEE entirely equivalent to 4D RW equation !
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All gauge invariant perturbation info contained in scalar
curvature perturbation fields

s .
3M @
oM am . (£+2)! P(e,m)
G- = —7\/;Z5l(m)3(1,m> - 2 T Sem
m=1 (£>2,m)

MM M (£+2)! .
Gy=-—%—+ ?gz (=2 110+ 29 m Stesm

[0gas] = (G-([09as]), G+([6gas])) is a bijection
LEE entirely equivalent to 4D RW equation !
Perturbations are bounded in the outer region:

G- < K_/1%, |Gi| < Ku/P®
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e All gauge invariant perturbation info contained in scalar
curvature perturbation fields

M G
VE 25! —Z5 > EEmsem

° sz

2M6M (¢ +2)!
G+ = r4 Dzz 7_ 2)' [far +Z£] (Zﬁ&?m)S(e,m)

[0gas] = (G-([09as]), G+([6gas])) is a bijection
LEE entirely equivalent to 4D RW equation !
Perturbations are bounded in the outer region:

G- < K_/1%, |Gi| < Ku/P®

For large t we get decay within Kerr/ds family:

3
2MsM
~ _6M /[4Axm q ~
S —7\/;§ ™S m, G ==
m=1
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