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Motivations

■ Geodesic completeness is a basic criterion to determine whether a space-time is

singular or not.

See Geroch, Ann.Phys.(1968)
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Motivations

■ Geodesic completeness is a basic criterion to determine whether a space-time is

singular or not.

See Geroch, Ann.Phys.(1968)

■ Incomplete geodesics and curvature divergences are two logically independent

concepts that typically appear together in black hole scenarios.

◆ This correlation has spreaded the view that theories with bounded curvature

invariants could lead to nonsingular space-times.

◆ Despite many efforts in different directions, singularities are still an

important open question in black hole physics.
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Motivations

■ Geodesic completeness is a basic criterion to determine whether a space-time is

singular or not.

See Geroch, Ann.Phys.(1968)

■ Incomplete geodesics and curvature divergences are two logically independent

concepts that typically appear together in black hole scenarios.

◆ This correlation has spreaded the view that theories with bounded curvature

invariants could lead to nonsingular space-times.

◆ Despite many efforts in different directions, singularities are still an

important open question in black hole physics.

■ In this talk I will provide examples of geodesically complete, and hence

nonsingular, BH space-times which, nonetheless, exhibit curvature divergences.
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Our framework: metric-affine gravity

■ In the metric-affine (or Palatini) formalism, one assumes that gµν and Γα
βγ

are

independent entities: S =
∫

dnx
√−gL[gµν,Γ

α
βγ
]+Smatter[gµν,ψm]
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Our framework: metric-affine gravity

■ In the metric-affine (or Palatini) formalism, one assumes that gµν and Γα
βγ

are

independent entities: S =
∫

dnx
√−gL[gµν,Γ

α
βγ
]+Smatter[gµν,ψm]

■ Field equations in Palatini approach:

δS =
∫

dnx

[√−g
(

δL
δgµν − L

2 gµν

)

δgµν +
√−g δL

δΓα
βγ

δΓα
βγ

]

+δSmatter

δgµν ⇒ δL
δgµν − L

2 gµν = 8πGTµν

δΓα
βγ

⇒ δL
δΓα

βγ
= 0 (assuming no coupling of Γ to the matter)
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are

independent entities: S =
∫

dnx
√−gL[gµν,Γ

α
βγ
]+Smatter[gµν,ψm]

■ Field equations in Palatini approach:

δS =
∫

dnx

[√−g
(

δL
δgµν − L

2 gµν

)

δgµν +
√−g δL

δΓα
βγ

δΓα
βγ

]

+δSmatter

δgµν ⇒ δL
δgµν − L

2 gµν = 8πGTµν

δΓα
βγ

⇒ δL
δΓα

βγ
= 0 (assuming no coupling of Γ to the matter)

■ Metric approach:

The relation δΓα
βγ

= gαρ

2

[

∇βδgργ +∇γδgρβ −∇ρδgβγ

]

implies

δL
δΓα

βγ
δΓα

βγ
=

{

gαµ δL
δΓα

λν
− gαλ

2
δL

δΓα
µν

}

∇λδgµν and leads to

δgµν ⇒
(

δL
δgµν − L

2 gµν

)

+∇λ

[

gγν
δL

δΓ
µ

λγ

−gβµgγνgαλ δL
δΓα

βγ

]

= 8πGTµν
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■ In the metric-affine (or Palatini) formalism, one assumes that gµν and Γα
βγ

are

independent entities: S =
∫

dnx
√−gL[gµν,Γ

α
βγ
]+Smatter[gµν,ψm]

■ Field equations in Palatini approach:

δS =
∫

dnx
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√−g δL

δΓα
βγ

δΓα
βγ

]

+δSmatter

δgµν ⇒ δL
δgµν − L

2 gµν = 8πGTµν

δΓα
βγ

⇒ δL
δΓα

βγ
= 0 (assuming no coupling of Γ to the matter)

■ Metric approach:

The relation δΓα
βγ

= gαρ

2

[

∇βδgργ +∇γδgρβ −∇ρδgβγ

]

implies

δL
δΓα

βγ
δΓα

βγ
=

{

gαµ δL
δΓα

λν
− gαλ

2
δL

δΓα
µν

}

∇λδgµν and leads to

δgµν ⇒
(

δL
δgµν − L

2 gµν

)

+∇λ

[

gγν
δL

δΓ
µ

λγ

−gβµgγνgαλ δL
δΓα

βγ

]

= 8πGTµν

■ Metric and Palatini variations generally lead to different field equations.
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Our model: Born-Infeld gravity

■ Let S = 1
κ2ε

∫
dnx

[√

−|gµν + εRµν(Γ)|−λ
√−g

]

+Sm with κ2 = 8πG

◆ This is a Born-Infeld type extension of General Relativity.

◆ GR is recovered at low energies: (here Λe f f =
λ−1

ε )

limε→0 S = 1
2κ2

∫
dnx

√−g
[

R−2Λe f f +
εR2

4 − ε
2 RµνRµν + . . .

]

+Sm
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Our model: Born-Infeld gravity

■ Let S = 1
κ2ε

∫
dnx

[√

−|gµν + εRµν(Γ)|−λ
√−g

]

+Sm with κ2 = 8πG

◆ This is a Born-Infeld type extension of General Relativity.

◆ GR is recovered at low energies: (here Λe f f =
λ−1

ε )

limε→0 S = 1
2κ2

∫
dnx

√−g
[

R−2Λe f f +
εR2

4 − ε
2 RµνRµν + . . .

]

+Sm

■ Field equations (with qµν ≡ gµν + εRµν(Γ) ):

◆ gµν ⇒
√

|q|√
|g|q

µν −λgµν =−κ2εT µν

◆ Γα
µν ⇒ ∇Γ

α

(√
qqµν

)

= 0
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◆ gµν ⇒
√

|q|√
|g|q

µν −λgµν =−κ2εT µν

◆ Γα
µν ⇒ ∇Γ

α

(√
qqµν

)

= 0

■ In GR ∇L
α

(√
ggµν

)

= 0 ↔ ∇L
αgµν = 0 ↔ Lλ

µν = gλρ

2

(

∂µgρν +∂νgρµ −∂ρgµν

)
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ggµν

)

= 0 ↔ ∇L
αgµν = 0 ↔ Lλ

µν = gλρ

2

(

∂µgρν +∂νgρµ −∂ρgµν

)

■ In BI gravity: ∇Γ
α

(√
qqµν

)

= 0 ⇒ Γλ
µν = qλρ

2

(

∂µqρν +∂νqρµ −∂ρqµν

)
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(
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α

(√
qqµν

)

= 0 ⇒ Γλ
µν = qλρ

2

(

∂µqρν +∂νqρµ −∂ρqµν

)

■ One finds qµν = gµαΩα
ν with |Ω| 1

2 (Ω−1)µ
ν = λδµ

ν −κ2εTµ
ν
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■ Let S = 1
κ2ε

∫
dnx

[√

−|gµν + εRµν(Γ)|−λ
√−g

]

+Sm with κ2 = 8πG

◆ This is a Born-Infeld type extension of General Relativity.

◆ GR is recovered at low energies: (here Λe f f =
λ−1

ε )
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+Sm

■ Field equations (with qµν ≡ gµν + εRµν(Γ) ):

◆ gµν ⇒
√

|q|√
|g|q

µν −λgµν =−κ2εT µν

◆ Γα
µν ⇒ ∇Γ

α

(√
qqµν

)

= 0

■ In GR ∇L
α

(√
ggµν

)

= 0 ↔ ∇L
αgµν = 0 ↔ Lλ

µν = gλρ

2

(

∂µgρν +∂νgρµ −∂ρgµν

)

■ In BI gravity: ∇Γ
α

(√
qqµν

)

= 0 ⇒ Γλ
µν = qλρ

2

(

∂µqρν +∂νqρµ −∂ρqµν

)

■ One finds qµν = gµαΩα
ν with |Ω| 1

2 (Ω−1)µ
ν = λδµ

ν −κ2εTµ
ν

The space-time metric gµν and the auxiliary metric hµν are related by a

matter-induced deformation Ωµ
α.
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Black Holes with charge in BI gravity
■ The equations using qµν take on a very familiar form:

Rµ
ν(q) =

κ2

|Ω|1/2

(

LBIδ
µ
ν +T µ

ν

)

, where







LBI =
|Ω|1/2−λ

κ2ε

|Ω| 1
2 (Ω−1)µ

ν = λδµ
ν −κ2εTµ

ν
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Black Holes with charge in BI gravity
■ The equations using qµν take on a very familiar form:

Rµ
ν(q) =

κ2

|Ω|1/2

(

LBIδ
µ
ν +T µ

ν

)

, where







LBI =
|Ω|1/2−λ

κ2ε

|Ω| 1
2 (Ω−1)µ

ν = λδµ
ν −κ2εTµ

ν

■ Coupling BI gravity to a static, spherically symmetric electric field one finds:

◆ Deformation matrix:

Ω̂ =





Ω+ Î2×2 0̂n×2

0̂2×n Ω− În×n



 , where















Ω+ =
(λ+z−2(n−2))

2
n−2

(λ−z−2(n−2))
n−4
n−2

Ω− =
(

λ− z−2(n−2)
) 2

n−2

◆ Line element: ds2 =−A(z)
Ω+

dt2 + 1
A(z)Ω+

dx2 + r2(x)dΩ2
(n−2)

◆ Other definitions:

■ A(z) =

[

1− 2M(z)
r

1

Ω
1/2
−

]

,
Mz

δ1M0
=−zd−2

(

Ω−−1

Ω
1/2
−

)

(

λ+ 1
z2(d−2)

)

.

■ r
2(d−3)
q ≡ κ2q2

(4π)
, l2

ε ≡−ε, rc
2(d−2) ≡ l2

ε r
2(d−3)
q , r ≡ rcz

■ δ1 ≡ (d−3)rd−1
c

2M0l2
ε

. [See arXiv:1507.07763 [hep-th] for details!]
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ν −κ2εTµ
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■ Coupling BI gravity to a static, spherically symmetric electric field one finds:

◆ Deformation matrix:

Ω̂ =
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 , where















Ω+ =
(λ+z−2(n−2))

2
n−2

(λ−z−2(n−2))
n−4
n−2

Ω− =
(

λ− z−2(n−2)
) 2

n−2

◆ Line element: ds2 =−A(z)
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dx2 + r2(x)dΩ2
(n−2)

◆ Other definitions:
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,
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=−zd−2

(

Ω−−1

Ω
1/2
−

)

(

λ+ 1
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)

.

■ r
2(d−3)
q ≡ κ2q2

(4π)
, l2

ε ≡−ε, rc
2(d−2) ≡ l2

ε r
2(d−3)
q , r ≡ rcz

■ δ1 ≡ (d−3)rd−1
c

2M0l2
ε

. [See arXiv:1507.07763 [hep-th] for details!]

■ When z ≫ 1 (or r ≫ rc ) the GR solutions are quickly recovered.
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Wormhole structure

■ The radial sector is given by r2(x) =
x2+

√
x4+4r4

c

2 , with a minimum at x = 0.

This is reminiscent of a wormhole geometry.

-3 -2 -1 1 2 3
x

0.5

1.0

1.5

2.0

2.5

3.0
rHxL

■ D = 4 (solid)
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Wormhole structure

■ The radial sector is given by rD−2(x) =
|x|D−2+

√

|x|2(D−2)+4r
2(D−2)
c

2 , with a

minimum at x = 0. This is reminiscent of a wormhole geometry.

-3 -2 -1 1 2 3
x

0.5

1.0

1.5

2.0

2.5

3.0
rHxL

■ D = 4 (solid), D = 7 (dashed)
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Black Holes as Geons

■ If there is a hole at the center, where are the sources???
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Black Holes as Geons

■ If there is a hole at the center, where are the sources???

■ The lines of force of the electric field enter through one of the wormhole

mouths and exit through the other creating the illusion of a negatively charged

object on one side and a positively charged object on the other.

■ The locally measured electric charge is defined by the flux Φ ≡
∫

S ∗F = 4πq

through any hypersurface S enclosing a wormhole mouth.

■ There is no need for sources in this scenario of self-gravitating fields.

■ Wheeler (1955) coined the term geon for regular, self-gravitating fields.
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Geodesic completeness in Born-Infeld
■ The equation that governs the evolution of geodesics in this space-time is:

1
Ω2

+

(

dx
dτ

)2
= E2 −Ve f f , with Ve f f ≡

(

κ+ L2

r2

)

A(r)
Ω+

.

◆ Where κ = 0 for null geodesics and κ = 1 for time-like geodesics.

◆ L2 and E2 are the angular momentum and energy per unit mass.
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Geodesic completeness in Born-Infeld
■ The equation that governs the evolution of geodesics in this space-time is:

1
Ω2

+

(

dx
dτ

)2
= E2 −Ve f f , with Ve f f ≡

(

κ+ L2

r2

)

A(r)
Ω+

.

◆ Where κ = 0 for null geodesics and κ = 1 for time-like geodesics.

◆ L2 and E2 are the angular momentum and energy per unit mass.

■ For null radial geodesics Ve f f = 0
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Geodesic completeness in Born-Infeld
■ The equation that governs the evolution of geodesics in this space-time is:

1
Ω2

+

(

dx
dτ

)2
= E2 −Ve f f , with Ve f f ≡

(

κ+ L2

r2

)

A(r)
Ω+

.

◆ Where κ = 0 for null geodesics and κ = 1 for time-like geodesics.

◆ L2 and E2 are the angular momentum and energy per unit mass.

■ For null radial geodesics Ve f f = 0

■ Null and time-like geodesics with L 6= 0: Ve f f ∝
(δ1−δd)

|x| .

◆ When δ1 > δd geodesics bounce before reaching the wormhole.

◆ When δ1 < δd the wormhole is reached and crossed: WH case:

(τ(x)− τ0) ∝ x |x|d−
7
2 . This guarantees that τ(x) ∈]−∞,+∞[.
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■ Black holes in GR represent singular space-times:

◆ Geodesic incompleteness of time-like and/or null geodesics.

◆ Curvature pathologies appear as a “reason” for the incompleteness.
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◆ Geodesic incompleteness of time-like and/or null geodesics.

◆ Curvature pathologies appear as a “reason” for the incompleteness.

■ In metric-affine extensions of GR:

◆ Central singularity of charged black holes replaced by a wormhole.

◆ These wormholes have been discovered, not designed.

◆ The WH guarantees the extendibility of geodesics.
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◆ Curvature pathologies appear as a “reason” for the incompleteness.

■ In metric-affine extensions of GR:

◆ Central singularity of charged black holes replaced by a wormhole.

◆ These wormholes have been discovered, not designed.

◆ The WH guarantees the extendibility of geodesics.

■ In general, curvature divergences arise at the wormhole throat.

◆ This puts forward that geodesic incompleteness and curvature divergences

are logically independent concepts.

◆ The impact of curvature divergences on physical observers has been

investigated recently: a safe passage through them is possible.
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Summary and Conclusions

■ Black holes in GR represent singular space-times:

◆ Geodesic incompleteness of time-like and/or null geodesics.

◆ Curvature pathologies appear as a “reason” for the incompleteness.

■ In metric-affine extensions of GR:

◆ Central singularity of charged black holes replaced by a wormhole.

◆ These wormholes have been discovered, not designed.

◆ The WH guarantees the extendibility of geodesics.

■ In general, curvature divergences arise at the wormhole throat.

◆ This puts forward that geodesic incompleteness and curvature divergences

are logically independent concepts.

◆ The impact of curvature divergences on physical observers has been

investigated recently: a safe passage through them is possible.

■ Conclusion:

The avoidance of singularities can be achieved with

simple models in classical geometric scenarios

with independent metric and affine structures.
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