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Motivations


■ Geodesic completeness is a basic criterion to determine whether a space-time is


singular or not.


See Geroch, Ann.Phys.(1968)
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Motivations


■ Geodesic completeness is a basic criterion to determine whether a space-time is


singular or not.


See Geroch, Ann.Phys.(1968)


■ Incomplete geodesics and curvature divergences are two logically independent


concepts that typically appear together in black hole scenarios.


◆ This correlation has spreaded the view that theories with bounded curvature


invariants could lead to nonsingular space-times.


◆ Despite many efforts in different directions, singularities are still an


important open question in black hole physics.
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Motivations


■ Geodesic completeness is a basic criterion to determine whether a space-time is


singular or not.


See Geroch, Ann.Phys.(1968)


■ Incomplete geodesics and curvature divergences are two logically independent


concepts that typically appear together in black hole scenarios.


◆ This correlation has spreaded the view that theories with bounded curvature


invariants could lead to nonsingular space-times.


◆ Despite many efforts in different directions, singularities are still an


important open question in black hole physics.


■ In this talk I will provide examples of geodesically complete, and hence


nonsingular, BH space-times which, nonetheless, exhibit curvature divergences.
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Our framework: metric-affine gravity


■ In the metric-affine (or Palatini) formalism, one assumes that gµν and Γα
βγ


are


independent entities: S =
∫


dnx
√−gL[gµν,Γ


α
βγ
]+Smatter[gµν,ψm]
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■ In the metric-affine (or Palatini) formalism, one assumes that gµν and Γα
βγ


are


independent entities: S =
∫


dnx
√−gL[gµν,Γ


α
βγ
]+Smatter[gµν,ψm]


■ Field equations in Palatini approach:


δS =
∫


dnx


[√−g
(


δL
δgµν − L


2 gµν


)


δgµν +
√−g δL


δΓα
βγ


δΓα
βγ


]


+δSmatter


δgµν ⇒ δL
δgµν − L


2 gµν = 8πGTµν


δΓα
βγ


⇒ δL
δΓα


βγ
= 0 (assuming no coupling of Γ to the matter)
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δgµν − L


2 gµν = 8πGTµν


δΓα
βγ


⇒ δL
δΓα


βγ
= 0 (assuming no coupling of Γ to the matter)


■ Metric approach:


The relation δΓα
βγ


= gαρ


2


[


∇βδgργ +∇γδgρβ −∇ρδgβγ


]


implies


δL
δΓα


βγ
δΓα


βγ
=


{


gαµ δL
δΓα


λν
− gαλ


2
δL


δΓα
µν


}


∇λδgµν and leads to


δgµν ⇒
(


δL
δgµν − L


2 gµν


)


+∇λ
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gγν
δL


δΓ
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]
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gγν
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■ Metric and Palatini variations generally lead to different field equations.
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Our model: Born-Infeld gravity


■ Let S = 1
κ2ε


∫
dnx


[√


−|gµν + εRµν(Γ)|−λ
√−g


]


+Sm with κ2 = 8πG


◆ This is a Born-Infeld type extension of General Relativity.


◆ GR is recovered at low energies: (here Λe f f =
λ−1


ε )


limε→0 S = 1
2κ2


∫
dnx


√−g
[


R−2Λe f f +
εR2


4 − ε
2 RµνRµν + . . .


]


+Sm
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2κ2


∫
dnx


√−g
[


R−2Λe f f +
εR2


4 − ε
2 RµνRµν + . . .


]


+Sm


■ Field equations (with qµν ≡ gµν + εRµν(Γ) ):


◆ gµν ⇒
√


|q|√
|g|q


µν −λgµν =−κ2εT µν


◆ Γα
µν ⇒ ∇Γ


α


(√
qqµν


)


= 0
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µν −λgµν =−κ2εT µν
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◆ This is a Born-Infeld type extension of General Relativity.
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αgµν = 0 ↔ Lλ


µν = gλρ


2


(
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■ In BI gravity: ∇Γ
α


(√
qqµν


)


= 0 ⇒ Γλ
µν = qλρ


2


(


∂µqρν +∂νqρµ −∂ρqµν


)


■ One finds qµν = gµαΩα
ν with |Ω| 1


2 (Ω−1)µ
ν = λδµ


ν −κ2εTµ
ν


The space-time metric gµν and the auxiliary metric hµν are related by a


matter-induced deformation Ωµ
α.
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Black Holes with charge in BI gravity
■ The equations using qµν take on a very familiar form:


Rµ
ν(q) =


κ2


|Ω|1/2


(


LBIδ
µ
ν +T µ


ν


)


, where











LBI =
|Ω|1/2−λ


κ2ε


|Ω| 1
2 (Ω−1)µ


ν = λδµ
ν −κ2εTµ


ν
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Black Holes with charge in BI gravity
■ The equations using qµν take on a very familiar form:


Rµ
ν(q) =


κ2


|Ω|1/2


(


LBIδ
µ
ν +T µ


ν


)


, where











LBI =
|Ω|1/2−λ


κ2ε


|Ω| 1
2 (Ω−1)µ


ν = λδµ
ν −κ2εTµ


ν


■ Coupling BI gravity to a static, spherically symmetric electric field one finds:


◆ Deformation matrix:


Ω̂ =








Ω+ Î2×2 0̂n×2


0̂2×n Ω− În×n





 , where























Ω+ =
(λ+z−2(n−2))


2
n−2


(λ−z−2(n−2))
n−4
n−2


Ω− =
(


λ− z−2(n−2)
) 2


n−2


◆ Line element: ds2 =−A(z)
Ω+


dt2 + 1
A(z)Ω+


dx2 + r2(x)dΩ2
(n−2)


◆ Other definitions:


■ A(z) =


[


1− 2M(z)
r


1


Ω
1/2
−


]


,
Mz


δ1M0
=−zd−2


(


Ω−−1


Ω
1/2
−


)


(


λ+ 1
z2(d−2)


)


.


■ r
2(d−3)
q ≡ κ2q2


(4π)
, l2


ε ≡−ε, rc
2(d−2) ≡ l2


ε r
2(d−3)
q , r ≡ rcz


■ δ1 ≡ (d−3)rd−1
c


2M0l2
ε


. [See arXiv:1507.07763 [hep-th] for details!]
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ε ≡−ε, rc
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ε r
2(d−3)
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■ δ1 ≡ (d−3)rd−1
c


2M0l2
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. [See arXiv:1507.07763 [hep-th] for details!]


■ When z ≫ 1 (or r ≫ rc ) the GR solutions are quickly recovered.
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Wormhole structure


■ The radial sector is given by r2(x) =
x2+


√
x4+4r4


c


2 , with a minimum at x = 0.


This is reminiscent of a wormhole geometry.


-3 -2 -1 1 2 3
x


0.5


1.0


1.5


2.0


2.5


3.0
rHxL


■ D = 4 (solid)
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Wormhole structure


■ The radial sector is given by rD−2(x) =
|x|D−2+


√


|x|2(D−2)+4r
2(D−2)
c


2 , with a


minimum at x = 0. This is reminiscent of a wormhole geometry.
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■ D = 4 (solid), D = 7 (dashed)
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Black Holes as Geons


■ If there is a hole at the center, where are the sources???
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Black Holes as Geons


■ If there is a hole at the center, where are the sources???


■ The lines of force of the electric field enter through one of the wormhole


mouths and exit through the other creating the illusion of a negatively charged


object on one side and a positively charged object on the other.


■ The locally measured electric charge is defined by the flux Φ ≡
∫


S ∗F = 4πq


through any hypersurface S enclosing a wormhole mouth.


■ There is no need for sources in this scenario of self-gravitating fields.


■ Wheeler (1955) coined the term geon for regular, self-gravitating fields.
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Geodesic completeness in Born-Infeld
■ The equation that governs the evolution of geodesics in this space-time is:


1
Ω2


+


(


dx
dτ


)2
= E2 −Ve f f , with Ve f f ≡


(


κ+ L2


r2


)


A(r)
Ω+


.


◆ Where κ = 0 for null geodesics and κ = 1 for time-like geodesics.


◆ L2 and E2 are the angular momentum and energy per unit mass.
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Geodesic completeness in Born-Infeld
■ The equation that governs the evolution of geodesics in this space-time is:


1
Ω2


+


(


dx
dτ


)2
= E2 −Ve f f , with Ve f f ≡


(


κ+ L2


r2


)


A(r)
Ω+


.


◆ Where κ = 0 for null geodesics and κ = 1 for time-like geodesics.


◆ L2 and E2 are the angular momentum and energy per unit mass.


■ For null radial geodesics Ve f f = 0
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.


◆ Where κ = 0 for null geodesics and κ = 1 for time-like geodesics.


◆ L2 and E2 are the angular momentum and energy per unit mass.


■ For null radial geodesics Ve f f = 0


■ Null and time-like geodesics with L 6= 0: Ve f f ∝
(δ1−δd)


|x| .


◆ When δ1 > δd geodesics bounce before reaching the wormhole.


◆ When δ1 < δd the wormhole is reached and crossed: WH case:


(τ(x)− τ0) ∝ x |x|d−
7
2 . This guarantees that τ(x) ∈]−∞,+∞[.
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◆ The WH guarantees the extendibility of geodesics.


■ In general, curvature divergences arise at the wormhole throat.


◆ This puts forward that geodesic incompleteness and curvature divergences


are logically independent concepts.


◆ The impact of curvature divergences on physical observers has been


investigated recently: a safe passage through them is possible.
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■ Black holes in GR represent singular space-times:


◆ Geodesic incompleteness of time-like and/or null geodesics.


◆ Curvature pathologies appear as a “reason” for the incompleteness.


■ In metric-affine extensions of GR:


◆ Central singularity of charged black holes replaced by a wormhole.


◆ These wormholes have been discovered, not designed.


◆ The WH guarantees the extendibility of geodesics.


■ In general, curvature divergences arise at the wormhole throat.


◆ This puts forward that geodesic incompleteness and curvature divergences


are logically independent concepts.


◆ The impact of curvature divergences on physical observers has been


investigated recently: a safe passage through them is possible.


■ Conclusion:


The avoidance of singularities can be achieved with


simple models in classical geometric scenarios


with independent metric and affine structures.
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