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1 - Introduction

= (Calculations of <¢2> are usually restricted to four dimensions, where the
counterterms necessary to obtain a renormalized quantity are well known.
Calculations in larger dimensions (D>4) are very few (Frolov & Mazzitelli,
Shiraishi & Maki, Thompson & Lemos, Decanini & Folacci, Breen et al)
due to the increased complexity of the counterterms, and are restricted to
the horizon.

= The goal of this work is to extended the calculation of <¢2> to higher
dimensional black holes, everywhere outside the horizon, which is
important when one is interested in higher dimensional theories.

» The case D=5 will be analyzed in full detail, where standard QFT
methods will be used to obtain a regularized result. The D=6 case will
also be analyzed, in the large mass limit.
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2 - Green function of a scalar field in a D-dimensional spacetime

The vacuum polarization is, by definition,

(% (z)) = xl/iinxiGF(a;,x’) = lim Gg(z,x')

' —x

which satisfies the Green function equation in a curved space background
5P (x — ")
V9

We will be particularly interested in the case of a Schwarzschild-Tangherlini spacetime

2402, f)=1- (ﬂ)D

r

(O —m? —¢R) Ge(x,2') = —

a5 = J)ir"+ 75

Since the problem has spherical symmetry, we can start by expanding the solution as a
combination of the hyperspherical harmonics (N=D-3)

(ﬂ) iwn T—7' - N (N)
Gp(z,z') = 47T 7%2 Z ( >Z(l+5>o (Q- Q) Gr(r, ")

n=—0oo =0 o = 27TT
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2 - Green function of a scalar field in a D-dimensional spacetime

PG (N+1  f'\NdG. [(w? IIl+N) m?>+€R (r —r')
() e (B ) =

Let x5 (r) and X,,;(7) be two solutions of the homogenous equation which are regular at
infinity and at the horizon, respectively. Then a solution to the non-homogeneous

differential equation is
1 X:z (r<) X (r>)

N+1 dx~ dxt _
I )y B () — Dt () ()

Gu(r,r') = —

We use a WKB ansatz for the solutions of the homogeneous equation
e:I: f:h W(uw)/f(u) du

V)

X*F(r) =

which reduces the radial Green function to the form

1
2rN+L (r)
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2 - Green function of a scalar field in a D-dimensional spacetime

The homogeneous differential equation becomes

%% W2 7%
W (I)—|—CL1——|—G,2——|—CL3W

W w2
[+ N
2 4

! 1\ f
pe=m +§R+<2 +2) 2+(T_Z)r_2

Inserting the WKB ansatz in the Green function and taking the coincidence limit, we
obtain (o« =27/5)

with

f ff/ 3 2£
9

2 2 _ _ 2 _r
b = r_g_'_wn_'_f:u a1 = — a2——1f ag—E
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2.1 — Regularization of the coincidence limit

We now express the solution iteratively as W = W© + 1w 4 ...  with the solution
written as
1 1

W, ~ pl/2

At first order, for example, we obtain

51@:_ﬂ3’+ (ag—a2> 2 a3 @

14012+ 6P+---)

4 P2 8 o3 4 P2

For large |, it is known that there will be non-physical divergences, where denoted 7;
which can always be rearranged in the form

& INQE
7;_87r T(WT2 ﬂ Z ZRZ

2

For each N, there will be a function R;(r) that will cancel the divergences in the angular
modes. A regularized result in the | modes is thus

Gro,7) = o 1ﬂ Z Z{ (”%)ﬁm_ﬁ}

(7‘('7“2 2 n=—oo [=0
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2.1 — Regularization of the coincidence limit

The expression is still divergent in the full coincidence limit € — 0 due to loop
divergences. The physical divergent part of the Green function for a general D-

dimensional spacetime can be obtained by using the Schwinger-DeWitt expansion, and
is given by

2A1/2
> an(z, @) (2m®) |27V K, (|2])
k=0

GE div. (CUa CU/) — (47T)—D/2

2 = —2m?c

As the dimensionality of the spacetime increases, the number of relevant heat kernel
coefficients Ak increases as well. For D=4 and 5, only k=0 and 1 are necessary. For
D=6 and 7, k=2 is needed as well, and so on.

» The complexity of the heat kernel coefficients rapidly increases as well (they have
only been calculated up to k=4).

» The calculation of the counterterms directly from the Green function provides a
way to compute these expressions using computer symbolic manipulation.
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3.1 — Summation over | and n modes

The renormalized vacuum polarization is given by the renormalized Green function

($*(x)) = lim [Gp(z,2") — Gpai.(v,2")]

' —x

— lim [Gg/KB(CE, :E/) — GE div.(xa CC/) -+ 5G}

' —x

It is instructive to confirm explicitly the cancellation of the divergent terms. From

o« = [(I+12  (I+1)r o« g .
Gp(x,z) = 15,3 ZZ{ W, 7} = 133 ZZL& (1)

n=1 =0 n=1 [=0

the divergent part can be calculated analytically by use of the Abel-Plana sum formula

o0 (5) o0 oo 7(5) (. (5)(_.
Gg(z,x) - Z (Jn ©) —I—/O JT(L5)(:U)daz—1—i/o In_(iz) = Ju (m)dx>

433

— 2 e2mr — |
P1 P Ps
where we only need to consider WKB up to first order, i.e.
1 1+09
Wnl \/5
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3.1 — Summation over | and n modes

We can evaluate the divergent piece of each term

2 / 2 "
4wn+<m2_[a1]+f__f_+f>

(em ()}

) 3w, S8/F| f r Af 3
= 1
le[P3]:Z —@>

which leads to the total divergent piece

4w%+<m2_[a1]+f7/_f_2+f_>

8V S

00 3
diV[P1+7D2-|—P3]:Z{ ! f 4f 3

(em ()}

This must be compared to the divergent terms obtained from the Schwinger-DeWitt
expansion.

n=1
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3.1 — Summation over | and n modes

Using the point splitting method and the Schwinger-DeWitt expansion, and choosing a
point separation in the temporal direction, we obtain

which leads to the counterterms

11 1 ) A - A |
G Ediv. = S2 [3/2 8 + 1672V/F (m 1] + . +

To compare with the counterterms expressed as a sum in the energy modes, we use the

results -
E log (aw,,) cos (wpe€) = ! + O(e)
— 2cc €
goo w? log (awy,) cos (wnpe) = 1 + O(e)
— " 2a0 g3

which exactly cancels all the divergent terms.
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3.2 — Numerical results

Figure 1: Profile of the renormalized
vacuum polarization for Mgy = 5.

Figure 1: Profile of the renormalized

vacuum polarization for Mgy = 15/2.
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4.1 — Summation over | and n modes

For D=6, the Green function is

- +DI+3/2) | _ _« SN S0
E(:E7x 471'4’7‘4 ZZ W, L — Ardprd ZZ n ( )
n=1 1=0 n=1 1=0
where we must now also consider the second order WKB approximation
I 1+01D+029
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4.1 — Summation over | and n modes

One can verify that, in the large mass limit, the divergent piece is

= am*  am? 8f’ 12f 12 1 am?w,
Gaaiv. = Zl ({647r3 T 3 (_ _5) (f T r2)} o 167 J )

n—

On the other hand, using the Schwinger-DeWitt expansion, we obtain in the same
limit

4 2

o (™ la1]m? loge . M 1
Bdive = \ G478~ 3273 ) B° T 1m0 f &2

Using the relations

oo 1 (0@
loge = —a Z M + c1 4+ O(e) — = —« an cos(we) + ca + O(e?)

2
w € —
n=1 n n=1

one is able to explicitly confirm the cancellation of the divergent terms.
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5 — Conclusions

= Although widely studied in 4 dimensions, the vacuum polarization in
higher dimensional spacetimes had not been tackled outside the horizon
up until now.

= We fully studied the case of a 5-dimensional Schwarzschild-Tangherlini
spacetime, and obtained a renormalized quantity. The regularity of the
result was explicitly proven by direct calculation of the counterterms. The
6-dimensional case was also studied, where regularity was shown for the
large mass limit.

» Although the WKB approach has proven itself very useful in a variety of
situations, it becomes clear that for higher dimensional spacetimes the
problem becomes more complicated, due to the necessity of including
higher order corrections as the dimensionality increases.
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