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The Penrose heuristic argument


The standard picture of gravitational collapse: Any asymptotically


flat initial data set evolving under the Einstein equations eventually


settles to a number of Kerr-Newman solutions scattering away


from each other.


Only three parameters per each of these black holes survive the


collapse: the total mass mi , angular momentum Ji , and charge qi .


For a Kerr-Newman black hole we have:


m2
i =


Ai


16π
+


q2
i


2
+
π(q4


i + 4J 2
i )


Ai


or minimizing over Ai :


m2
i ≥


q2
i +


√
q4
i + 4J 2


i


2
,


with equality iff the Kerr-Newman is extreme.
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Heuristic arguments (cont.)


Let m0, J0, q0 denote the mass, angular momentum, and total


charge of an initial state.


Under appropriate hypotheses


J0 = J =
∑Ji , q0 = q =


∑
qi , and m0 ≥ m =


∑
mi .


√
2m =


√
2
∑


mi ≥
∑√


q2
i +


√
q4
i + 4J 2


i ≥
√


q2 +
√


q4 + 4J 2.


Lemma
Let ai , bi ∈ R and let a =


∑
ai , b =


∑
bi . Then(


a4 + b2
)1/4 ≤


∑(
a4
i + b2


i


)1/4
.


Lemma
Let ai , bi ∈ R and let a =


∑
ai , b =


∑
bi . Then√


a2 +
√


a4 + b2 ≤
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a2
i +


√
a4
i + b2


i .
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m, q, J inequality for multiple black holes


Theorem (Khuri-W)


Let (M, g , k ,E ,B) be a smooth, simply connected, axially


symmetric, maximal initial data set satisfying µEM ≥ 0 and


g(JEM, η) = 0, and with N + 1 ends, one designated AF and the


others either AF or AC. Then


m ≥ F(J1, . . . ,JN , qe
1 , . . . , q


e
N , q


b
1 , . . . , q


b
N). (1)


The function F is the reduced energy of a harmonic map.


Work in progress: F =


√(
q2 +


√
q4 + 4J 2


)
/2.


Conjecture


Equality cannot be achieved if N > 1 unless all charges are of the


same sign and the angular momenta vanish. In this case, the initial


data set is isometric to the canonical slice of a MP spacetime.
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I P. Chruściel, Y. Li, and G. Weinstein, Mass and angular-momentum
inequalities for axi-symmetric initial data sets. II. Angular
Momentum, Ann. Phys., 323 (2008), 2591-2613.


I R. Schoen, and X. Zhou, Convexity of reduced energy and mass
angular momentum inequalities, Ann. Henri Poincaré, 14 (2013),
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1747-1773.
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I P. Chruściel, Mass and angular-momentum inequalities for
axi-symmetric initial data sets. I. Positivity of Mass, Ann. Phys.,
323 (2008), 2566-2590.
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Sketch of proof


Under the hypotheses, one may define EM potentials χ, ψ, and a


twist potential v , so that


m ≥M(U, v , χ, ψ) =
1


8π


ˆ
R3


(
|∇U|2 +


e4U


ρ4
|∇v + χ∇ψ − ψ∇χ|2


+
e2U


ρ2


(
|∇χ|2 + |∇ψ|2


))
dx


If we define u = U − log ρ, then


HΩ(u, v , χ, ψ) =MΩ(U, v , χ, ψ) +


ˆ
Ω


|∇ρ|2
ρ2
−
ˆ


Ω
∇U · ∇ log ρ,


H is the harmonic map energy for Φ = (u, v , ψ, χ) : R3 → H2
C.


Since log ρ is harmonic, the EL equations for HΩ(u, v , χ, ψ), and


MΩ(u, v , χ, ψ) are the same.
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Sketch of proof


The proof consists in showing


I There is a critical point of M(U, v , χ, ψ) with the appropriate


boundary conditions and asymptotics. (Harmonic map with


prescribed singularities)


I The critical point is a minimizer of M. (Convexity under


geodesic deformation)


The function F is then the reduced energy M of that minimizer.


The boundary conditions are:


Jn =
1


4
(v |In − v |In−1),


qe
n =


1


2
(χ|In − χ|In−1), qb


n =
1


2
(ψ|In − ψ|In−1),


where In is the interval of the z-axis Γ from pn to pn+1, p0 = −∞
and pN+1 =∞.
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Existence of the harmonic map


The tension of a map Φ = (u, v , χ, ψ) is:


τu = ∆u − 2e4u|∇v + χ∇ψ − ψ∇χ|2 + e2u
(
|∇χ|2 + |∇ψ|2


)
,


τ v = ∆v + 2∇u · ∇v + 2(∇v + χ∇ψ − ψ∇χ) · ∇u


− 2e2u(∇v + χ∇ψ − ψ∇χ) · (χ∇χ+ ψ∇ψ),


τχ = ∆χ+ 2∇u · ∇χ− 2e2u(∇v + χ∇ψ − ψ∇χ) · ∇ψ,
τψ = ∆ψ + 2∇u · ∇ψ + 2e2u(∇v + χ∇ψ − ψ∇χ) · ∇χ.


Thus τ(Φ) = 0 iff Φ is harmonic.


Lemma
There is a map Φ̃0, such that its reduced energy is finite, its


tension τ(Φ̃0) has support inside a bounded set, and τ(Φ̃0) is


pointwise bounded. Moreover, the values of (ṽ0, χ̃0, ψ̃0) agree with


those of the given data (v , χ, ψ) on each component of


Γ′ = Γ \ {p1, . . . , pN}, and Ũ0 = ũ0 + log ρ = log rn + ol−4(r
1/2
n )


near each puncture pn.
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1/2
n )


near each puncture pn.
Weinstein A lower bound for the mass







B1


B2


B


Ω


C1


C2


C3


Γ′
+


Γ′
−


Weinstein A lower bound for the mass







Existence of the harmonic map


We say that two maps Φ,Ψ: R3 \ Γ→ H2
C are asymptotic if


distH2
C


(Φ,Ψ) is bounded.


Corollary


For any set of punctures pn on the axis Γ and prescribed constants


v0|In , χ0|In , ψ0|In , n = 1, . . . ,N, there exists a corresponding


unique harmonic map Ψ̃0 = (u0, v0, χ0, ψ0) which is asymptotic to


Φ̃0, and satisfies


U0 = u0 + log ρ = log rn + O(1), v0, χ0, ψ0 = O(1), as rn → 0.


Furthermore, on R3 \ Γ, the reduced energy density E ′(Ψ̃0) ≤ cρ−2.


The proof of the corollary uses the convexity of distH2
C


.


I G. Weinstein, Harmonic maps with prescribed singularities into


Hadamard manifolds, Mathematical Research Letters, 3 (1996), no


6, 835-844.
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Thank you!
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