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The Penrose heuristic argument

The standard picture of gravitational collapse: Any asymptotically

flat initial data set evolving under the Einstein equations eventually

settles to a number of Kerr-Newman solutions scattering away

from each other.

Only three parameters per each of these black holes survive the

collapse: the total mass mi , angular momentum Ji , and charge qi .

For a Kerr-Newman black hole we have:
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or minimizing over Ai :

m2
i ≥

q2
i +

√
q4
i + 4J 2

i

2
,

with equality iff the Kerr-Newman is extreme.
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Heuristic arguments (cont.)

Let m0, J0, q0 denote the mass, angular momentum, and total

charge of an initial state.

Under appropriate hypotheses

J0 = J =
∑Ji , q0 = q =

∑
qi , and m0 ≥ m =

∑
mi .

√
2m =

√
2
∑

mi ≥
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q2
i +

√
q4
i + 4J 2

i ≥
√

q2 +
√

q4 + 4J 2.

Lemma
Let ai , bi ∈ R and let a =

∑
ai , b =

∑
bi . Then(

a4 + b2
)1/4 ≤
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i + b2

i

)1/4
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Lemma
Let ai , bi ∈ R and let a =
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∑
bi . Then√
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m, q, J inequality for multiple black holes

Theorem (Khuri-W)

Let (M, g , k ,E ,B) be a smooth, simply connected, axially

symmetric, maximal initial data set satisfying µEM ≥ 0 and

g(JEM, η) = 0, and with N + 1 ends, one designated AF and the

others either AF or AC. Then

m ≥ F(J1, . . . ,JN , qe
1 , . . . , q

e
N , q

b
1 , . . . , q

b
N). (1)

The function F is the reduced energy of a harmonic map.

Work in progress: F =

√(
q2 +

√
q4 + 4J 2

)
/2.

Conjecture

Equality cannot be achieved if N > 1 unless all charges are of the

same sign and the angular momenta vanish. In this case, the initial

data set is isometric to the canonical slice of a MP spacetime.
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I P. Chruściel, and J. Costa, Mass, angular-momentum and charge
inequalities for axisymmetric initial data, CQG, 26 (2009), no. 23,
235013.

I J. Costa, Proof of a Dain inequality with charge, J. Phys. A, 43
(2010), no. 28, 285202.

Weinstein A lower bound for the mass



Previous Work

I S. Dain, Proof of the angular momentum-mass inequality for
axisymmetric black hole, JDG, 79 (2008), 33-67.

I S. Dain, Geometric inequalities for axially symmetric black holes,
CQG, 29 (2012), no. 7, 073001.
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I P. Chruściel, Y. Li, and G. Weinstein, Mass and angular-momentum
inequalities for axi-symmetric initial data sets. II. Angular
Momentum, Ann. Phys., 323 (2008), 2591-2613.

I R. Schoen, and X. Zhou, Convexity of reduced energy and mass
angular momentum inequalities, Ann. Henri Poincaré, 14 (2013),
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I P. Chruściel, Y. Li, and G. Weinstein, Mass and angular-momentum
inequalities for axi-symmetric initial data sets. II. Angular
Momentum, Ann. Phys., 323 (2008), 2591-2613.

I R. Schoen, and X. Zhou, Convexity of reduced energy and mass
angular momentum inequalities, Ann. Henri Poincaré, 14 (2013),
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Sketch of proof

Under the hypotheses, one may define EM potentials χ, ψ, and a

twist potential v , so that

m ≥M(U, v , χ, ψ) =
1

8π

ˆ
R3

(
|∇U|2 +

e4U

ρ4
|∇v + χ∇ψ − ψ∇χ|2

+
e2U

ρ2

(
|∇χ|2 + |∇ψ|2

))
dx

If we define u = U − log ρ, then

HΩ(u, v , χ, ψ) =MΩ(U, v , χ, ψ) +

ˆ
Ω

|∇ρ|2
ρ2
−
ˆ

Ω
∇U · ∇ log ρ,

H is the harmonic map energy for Φ = (u, v , ψ, χ) : R3 → H2
C.

Since log ρ is harmonic, the EL equations for HΩ(u, v , χ, ψ), and

MΩ(u, v , χ, ψ) are the same.
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Sketch of proof

The proof consists in showing

I There is a critical point of M(U, v , χ, ψ) with the appropriate

boundary conditions and asymptotics. (Harmonic map with

prescribed singularities)

I The critical point is a minimizer of M. (Convexity under

geodesic deformation)

The function F is then the reduced energy M of that minimizer.

The boundary conditions are:

Jn =
1

4
(v |In − v |In−1),

qe
n =

1

2
(χ|In − χ|In−1), qb

n =
1

2
(ψ|In − ψ|In−1),

where In is the interval of the z-axis Γ from pn to pn+1, p0 = −∞
and pN+1 =∞.
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The proof consists in showing

I There is a critical point of M(U, v , χ, ψ) with the appropriate

boundary conditions and asymptotics. (Harmonic map with
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Existence of the harmonic map

The tension of a map Φ = (u, v , χ, ψ) is:

τu = ∆u − 2e4u|∇v + χ∇ψ − ψ∇χ|2 + e2u
(
|∇χ|2 + |∇ψ|2

)
,

τ v = ∆v + 2∇u · ∇v + 2(∇v + χ∇ψ − ψ∇χ) · ∇u

− 2e2u(∇v + χ∇ψ − ψ∇χ) · (χ∇χ+ ψ∇ψ),

τχ = ∆χ+ 2∇u · ∇χ− 2e2u(∇v + χ∇ψ − ψ∇χ) · ∇ψ,
τψ = ∆ψ + 2∇u · ∇ψ + 2e2u(∇v + χ∇ψ − ψ∇χ) · ∇χ.

Thus τ(Φ) = 0 iff Φ is harmonic.

Lemma
There is a map Φ̃0, such that its reduced energy is finite, its

tension τ(Φ̃0) has support inside a bounded set, and τ(Φ̃0) is

pointwise bounded. Moreover, the values of (ṽ0, χ̃0, ψ̃0) agree with

those of the given data (v , χ, ψ) on each component of

Γ′ = Γ \ {p1, . . . , pN}, and Ũ0 = ũ0 + log ρ = log rn + ol−4(r
1/2
n )

near each puncture pn.
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Existence of the harmonic map

We say that two maps Φ,Ψ: R3 \ Γ→ H2
C are asymptotic if

distH2
C

(Φ,Ψ) is bounded.

Corollary

For any set of punctures pn on the axis Γ and prescribed constants

v0|In , χ0|In , ψ0|In , n = 1, . . . ,N, there exists a corresponding

unique harmonic map Ψ̃0 = (u0, v0, χ0, ψ0) which is asymptotic to

Φ̃0, and satisfies

U0 = u0 + log ρ = log rn + O(1), v0, χ0, ψ0 = O(1), as rn → 0.

Furthermore, on R3 \ Γ, the reduced energy density E ′(Ψ̃0) ≤ cρ−2.

The proof of the corollary uses the convexity of distH2
C

.

I G. Weinstein, Harmonic maps with prescribed singularities into

Hadamard manifolds, Mathematical Research Letters, 3 (1996), no

6, 835-844.
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Thank you!
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