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The spacetime

We consider the particular case of spherically symmetric, shear-free
radiating stellar models. The line element for the interior for the
spacetimes is given by

ds® = —A%dt? + B? [dr* + r?dQ?], (1)

where A and B are metric functions of t and r, and

dQ? = d#? + sin® 0d¢?. The acceleration and and expansion are nonzero
but the fluid is shear-free.

The energy momentum tensor has the form

Tap = (1 + pL) vatp + p18ab + (P — PL)XaXb + Galib + Gplia,  (2)

with heat flux and anisotropic stress. The fluid four-velocity u? = %53 is
comoving, x? is an unit four-vector along the radial direction (u,x? = 0),
and the heat flow vector g% = (0, q,0,0) is radially directed (u,q? = 0).

G Z Abebe  (University of KwaZulu-Natal) Radiating stars 2/22



The Einstein field equations for the heat conducting spherically symmetric
anisotropic fluid (2) become
3B 1 (28rr B? 43,)

b= ome BE\’E B (32)

B B> B
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1= e\ s

+ (3b)

(3¢)

(3d)

BB "aB
for the line element (1). The equations (3) describe the gravitational

interactions in the interior of a shear-free spherically symmetric star with

heat flux and anisotropic pressures.
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The boundary of a radiating star divides the spacetime into interior and
exterior regions. The interior spacetime (1) has to match across the
boundary of the star to the Vaidya spacetime

ds?2 = — <1 - 2'";”) dv? — 2dvdR + R? (d6? +sin® 0d¢?),  (4)

which is the exterior. Here the quantity m(v) denotes the mass of the star
as measured by an observer at infinity. Matching leads to the junction
condition

(p)s = (Bg)s, (5)

where the hypersurface ¥ defines the boundary of the radiating sphere.

G Z Abebe  (University of KwaZulu-Natal) Radiating stars 4 /22



The boundary of a radiating star divides the spacetime into interior and
exterior regions. The interior spacetime (1) has to match across the
boundary of the star to the Vaidya spacetime

ds? = — (1 ~ 2'";”) dv? — 2dvdR + R? (d6? +sin® 0d¢?),  (4)

which is the exterior. Here the quantity m(v) denotes the mass of the star
as measured by an observer at infinity. Matching leads to the junction
condition

(p)s = (Bg)s, (5)

where the hypersurface ¥ defines the boundary of the radiating sphere.
The junction condition (5) together with the field equations (2) gives
Brt Btt AtBt BrBt ArBr ArBt Br2
2 2 -2 -2 -2 -2 - —
AB2 o A2B A3B AB3 AB3 A2B2 B4

B? A, B,
£ -2 —> =0, (6)

_l’_

A2B2 rAB2 rB3
valid at the boundary of a shear-free radiating star.
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We consider the general model of an accelerating, expanding and shearing radiating star in the
presence of charge. Using a new set of variables arising from the Lie symmetries of differential equa-
tions we transform the boundary equation into ordinary differential equations. We present several
new exact solutions for the master equation. A particular family of solution may be interpreted
as a charged generalised Euclidean stars. This family admits a linear barotropic equation of state
In the uncharged limit we regain stellar models where proper and areal radii are equal, and its
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An nth order differential equation
F(r.t,A B,A:, Br,At, Bt, Arry Brr, Aty Brty Aty Biry ... ) = 0 (7)

where A= A(r,t) and B = B(r, t), admits a Lie symmetry of the form

G = gl(r,t,A,B) 0 +§2(r t, A, B)gt
+(tAB)8+ (tAB)6 (8)
m\r,t,A, OA m\r 9B
provided that
GlFrl =0 (9)

F=0

where Gl is the nth prolongation of the symmetry G. The process is
algorithmic and so can be implemented by computer algebraic packages.
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Using PROGRAM LIE (Head 1993), we find the set of symmetries

0 0
_ / . i
G = -—Af (t)aA + f(t)at’ (10a)
0 0
G = A +Bos, (10b)
0 0
G3 A87 + ra s (10C)

where f(t) is an arbitrary function of t.
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Using PROGRAM LIE (Head 1993), we find the set of symmetries

0 0
j— —_— / —_ —
G = -Af (t)aA + f(t)at’ (10a)
0 0
G = A + Ba—B, (10b)
0 0
— Ai
Gs3 A + ra , (10c)
where f(t) is an arbitrary function of t. We take a general linear
combination
0 0 0 0
—_— I I - - P —_
aGy+bGy+cG3 = [c + b — af'(t)] A8A+bBaB+af(t)8t+crar, (11)

to reduce the partial differential equation (6) into ordinary differential
equations for further analysis. Note that a, b and c are arbitrary constants.
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Then (11) gives the invariants

exp (ft afd(tt)>

x = — e (12a)
B [t [f bt

a = e ([ ) (126)

B = g(x)rb, (12¢)

where a # 0 and ¢ # 0 . Note that g and h being arbitrary functions of x.
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Then (11) gives the invariants

exp (ft afd(tt)>

x = — e (12a)
B [t [f bt

a = e ([ ) (126)

B = g(x)rb, (12¢)

where a # 0 and ¢ # 0 . Note that g and h being arbitrary functions of x.
Using the invariants (12) we can write (6) in the form

[232gx2b+2c+1 ((b+c)g — xg’)} W h? + 2acxPtet2g2g W h
—2c32g3g'H + [c®xg? (xg” — 2g ((b+c —1)g’ — xg"))] h

~ [2acex" <t (g (xg" + &) — xg) | 1+ [3) (xg' — bg)

x ((b+2c)g —xg')] B* =0, (13)

where primes denote differentiation with respect to to the new variable x.
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To progress we make the assumption

h/
g(x) = kh(x) and y = b (14)
Then the transformation (14) enables us to write (13) in the form

222bx2(b+) 4 acxbFe (2axP+e — k) + (1 — b)c?k? — k2

/

ckx (ck — axb+c) Y
3axPte 1\ ,  a?b(b + 2¢)x3(bte-1)
- = 1
+ < 2ck T 2> 2ck (axbte — ck) (15)

Observe that (15) is a Riccati equation in the quantity y. Riccati
equations can be transformed to second order linear equations.
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We let

u(x) = exp [/ (332XC1:rC + ;) y(x)dx} . (16)
Note that in equation (16) the term (332)21“ + %) is the coefficient of the
quantity y? in (15). Using (16) equation (15) is transformed to
U+ y(x)d + ((x)u =0, (17)
where
v(x) = [6a3bx3(b+c) + a?cx?(bFe) <6axb+c + (56 — 3)k) — k2

<6axb+c +(b— 1)k) + ac?kxbte (5axb+c (2 6b)k)

1
—c*k? [ckx (—332x2(b+c) + ackxPe 4 c2k2)} . (18a)

(o) = a?b(b + 2c)x2(b+e=1) (3axbte 4 ck) (18b)
4c2k? (axbte — ck) '
Therefore we have the remarkable feature that the second order nonlinear
equation (13) has been transformed to the linear equation (17) via the

transformations (14) and (16).
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Case b= —

If we set b = —c then equation (17) becomes

2 n 2(3a—|— Ck)

a\aTer) 1
x“u" + xu' +4k2(ck—a)u 0, (19)

which is a simpler form. It is interesting to note that this case produces
the Euler equation (19). We can integrate (19) to give

av/3a+ ck . av/3a+ ck
T T — og(x )> + &sinh <2k — Iog(x))(720

where ¢; and & are arbitrary constants of integration. Then from (16) we
obtain

u(x) = ¢ cosh (

av/3a+ck
acv/3a+ ck C1X kVa—ck — ¢

y(x) = (21)

c1X kva—ck (o))

/2 — a\/Zatck '
3~ ck x (3ax¢ + ck) < - )

where G = C~1 + (::2 and C = C~1 — (,:2.
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Hence we have the potentials

av/3atck
— 1 —1/c /t dt 2k/a—ck
o\ TP\ aFe
g\ S
a—c 2ck
+n |:r—1/CeXp </ af(t)>:| 3atck | (223)
f
B = kB4 (22b)
r
3a+ck 3a+ck

where m = c1¢;** and n = cx¢c;**  are constants. This is a new solution
to the master equation.
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Hence we have the potentials

1 _1/e togr \]3e
(1) '”{r p(/ af (1)
4 todt ’gk;@ 2ck
+n [r /e exp </ af(t))} Satck, (22a)
B — k[, (22b)

3a+ck 3a+ck
where m = c1¢;** and n = cx¢c;**  are constants. This is a new solution

to the master equation. The line element for this case is

2 2
o[ ) 5] ([ 0 [ )

(23)
e e e

G Z Abebe  (University of KwaZulu-Natal) Radiating stars 14 / 22



The matter variables become

2 (32 — ack + c2k2) (ck (m2¢2 —4dmny + n2) — 6amm/J)
M - 4ck ?
ck3(a — ck)(3a + ck) (my + n)2 (¢—1/2 (m + n)) Zatck

2a (6amny — ck (m?y? — 4mmp + n?))
k2(ck — a)(3a + ck) (my + n)? (=12 () + n))é%"ck ’

(a+ ck) (=2 (my + n))_3§ik°k (12ammp + ck (my + n)2)
p = ack )
L ck3(3a+ ck) (my + ,,)2 (w_1/2 (mp + n)) 3atck

k _ 2ck
q = [ (m¢1/2+ ”w 1/2> 3a+ck:| P||
r

P =

From the above we generate the linear barotropic equation of state

ack
=\ )\ = 25
PI # a2 — ack + c2k?’ (25)

provided that k # —373.
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Case: k = —3a/cand b= —c
If we set k = —3a/c and b = —c, then equation (13) becomes
24x2hh" — 24x*H? + 24xhh' + c®h? = 0, (26)

which is greatly simplified. Now (26) can be integrated to give

h(x) = - [é |og2(x)] : (27)

where m and n are constants of integration.
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Case: k = —3a/cand b= —c

If we set k = —3a/c and b = —c, then equation (13) becomes
24x2hh" — 24x*H? + 24xhh' + c®h? = 0, (26)
which is greatly simplified. Now (26) can be integrated to give
nx™
hx) = —— (27)
exp [2—8 log (x)]
where m and n are constants of integration.
Hence we obtain the metric functions

= [ril/c =P (ft arg(tt))} )
A = f(t) exp (% log? {r*l/c exp (]f alg(tt))D ’ (28a)
5 = 25 (28b)

This is also a new solution to the master equation (6).
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The line element for this case given by
2

s I RO

exp (% log? ¢

m

ds® =

9

(29)
where ¢ = r~Y¢exp <ft a;"—(tt)>
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The line element for this case given by
2

s I RO

exp (% log? ¢

m
ds® =

9

(29)

where ¢ = r~Y¢exp <ft af‘.’(tt)>.The matter variables become

13 (c4 log? ¢ — 48mc? log p + 24 (c2 + 24m2)) exp (2—14C2 log?® go)

pe= 25022272 p2m ’
(48mc?log ¢ — c*log® ¢ — 24 (c2 + 24m?)) exp (2 c2 log? )
P = 86422 n2p2m ’
(48mc? log ¢ — c*log? ¢ + 48c% + 576m?) exp (22 log® )
PL = 648a2n2p2m ’
-1
3a ne™
T e l(@ o) | P
exp (R log gp)
We also have p| = Ap, A= —1—33, which is linear and barotropic.
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Case: b = (:I:@ — 1) c

In this case equation (13) becomes
6gg’h — 3 (2gg” + &) h+2V3g'h* = 0. (31)

The advantage of (31) is that it is a Bernoulli equation in h. Here g is
unspecified. We integrate (31) to obtain

\f g'\/& (32)

)=+ erd

where d is a constant of integration.
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Case: b= (:I:@ — 1) c
In this case equation (13) becomes
6gg’'h — 3 (2gg" + &%) h+£2V3g'h* = 0. (31)

The advantage of (31) is that it is a Bernoulli equation in h. Here g is
unspecified. We integrate (31) to obtain

o) - + 3 EVE (32)
Sy VE+d
where d is a constant of integration. Hence the potentials functions
become
a o= LY3EVE Ly (33a)
2 Jg+d
B = gri%fl./ (33b)

which is a new exact solution for the shear-free model.
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The line element for this model becomes
3 V3 V3
ds? = —Zg’ZrizT3 dt® + g2rjE2T3_2 [dr2 + erQQ] . (34)
from (33). In the above we have set the arbitrary constant d = 0 without

any loss of any generality.
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The line element for this model becomes

ds? — —%g’zrﬁ?dtZ +g2rj:2—\3/§—2 [dr2 I r2d§22] ' (34)

from (33). In the above we have set the arbitrary constant d = 0 without
any loss of any generality. The matter variables become

14r¢%
Ho= 3g2 ’

4r¢%
P = T T3g2

2

rtva
pL = - 9
g2
N -1
@ = &= ay

This solution also satisfies the barotropic equation of state.

2

which is linear.
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Summary

@ We developed the junction condition equation that relates the radial
pressure to the heat flux which a highly nonlinear partial differential
equation in the metric functions.

@ We demonstrated that this equation admits three Lie point
symmetries.

@ Using the general linear combination of these symmetries we reduced
the governing highly nonlinear partial differential equation to ordinary
differential equations.

@ By solving the reduced ordinary differential equations and
transforming to the original variables we obtained exact solutions for
the master equation.

@ We present the line element explicitly in each case and show that our
solutions obey the linear barotropic equation of state.
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