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Holographic Superconductors


Originally proposed by Hartnoll, Herzog, Horowitz (2008)


Consider 4D theory of Einstein-Maxwell-charged scalar


S =


∫
d4x
√
−g
(
R + 6− 1


4
F 2 − |Dφ|2 − V (φ)


)
, Dµ = ∇µ−iqAµ .


ds2 = −fdt2 +
dr2


g
+ r2


(
dx21 + dx22


)
, φ = φ(r) . (1)


For appropriate (q,V ), two classes of static, R2-invariant solutions:


1 AdS-Reissner Nordstrom (φ = 0)


2 charged AdS black hole with scalar hair (φ 6= 0)
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Extensions and Successes


By considering more complicated matter content and geometries, this


approach has been extended in many ways, by many authors


Some examples:


• Drude behaviour


• non-linear conductivity


• lattice effects


• cuprate-based superconductors


• momentum relaxation


• anisotropies/disorder


Bottom-up framework
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Top-down framework


It is interesting and important to consider these models in the context of


precise AdS/CFT dualities


• bottom-up dualities are not fully specified or defined


• bottom-up models only retain subset of full 10/11D degrees of


freedom


• AdS/CMT dualities derivable from 10D string theory/11D M-theory


• have the KK degrees of freedom


• not freely specified – constrained by compactification


• Does requiring an AdS/CMT duality to be “top-down” lead to any


important consequences/restrictions/effects?
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Top-down framework


Consider 11D SUGRA


2κ211S =


∫
d11x
√
−g
(
R − 1


2
|G4|2


)
+


1


6


∫
C3 ∧ G4 ∧ G4 ,


simple Freund-Rubin solution:


ds211 = ds2(AdS4) + 4
[
η ⊗ η + ds2(CP3)


]︸ ︷︷ ︸
S7


, G4 = −3vol(AdS4) .


Top-down embedding of Holographic Superconductor Gauntlett,


Sonner, Wiseman (2009)


ds211 = e−4Uds24 + 4e2Uds2(CP3) + 4e−4U(η + A1)⊗ (η + A1)


G4 =− 3e−12U(1− |χ|2)vol4 +
3i


4
e−12U ?4 (χ∗Dχ− χDχ∗) ∧ (η + A1)


+ F2 ∧ J +
√


3


[
χ(η + A1) ∧ Ω− i


4
Dχ ∧ Ω + cc


]
F = dA1, J = dA/2, e6U = 1− 3


4
|χ|2
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Top-down framework


Resulting non-linear 4D effective action:


S =


∫
d4x
√
−g
(
R + 6− 1


4
F 2 − h(χ)|Dχ|2 − V (χ)


)
Example of what’s called a consistent truncation:


• only subset of all KK modes are retained


• Remarkable that this exists at all!


Expanded around χ = 0,


S =


∫
d4x
√
−g
(
R + 6− 1


4
F 2 − |Dχ̃|2 + 2|χ̃|2


)
χ̃ has mass M2 = −2 (∆ = 1, 2) and q = 4


χ̃ is a pseudo-scalar: ∆ = 2 required by supersymmetry


Breitenlohner, Freedman (1982)


⇒ unstable to developing scalar hair!
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Superconducting Instabilities


near 2nd order phase transition, non-linearities negligible:


(D2 −M2)χ̃ = 0


• χ̃ = exp(−iωt)ϕ(r)


• T > Tc : only phase is Reissner Nordstrom (stable quasi-normal


mode)


• T = Tc : linearized zero mode


• T < Tc : hairy BH phase (linear instability)
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smaller ∆, larger q ⇒ stronger instability (higher Tc)
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Superconducting Instabilities


∆ charge q Tc/µ found by


1 4 0.803688


1 2 0.347821


2 4 0.0831536 Gauntlett, Sonner, Wiseman (2009)


2 2 0.00707295
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General Perturbations of 11D Embedding


• Are there any other instabilities?


• we considered perturbations around 11D AdS-RN×S7 background


δRAB −
1


6
δG(A|CDEG|B)


CDE +
1


144
hABG


2 +
1


4
G(A|ECDGB)P


CDhEP


+
gAB
144


(
2G · δG − 4GCDEFGG


DEFhCG
)


= 0 ,


d ? δG4 + d(δ?)G4 − G4 ∧ δG4 = 0 .


• in general won’t fit in consistent truncation


• need to separate out the CP3 dependence: use charged CP3


harmonics (previously used in perturbations of Myers-Perry BHs)


• charged: (Lη − im)δgAB = 0


• from 4D perspective perturbation has charge q = m
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General Perturbations of 11D Embedding


• Among many different CP3 harmonics, found one remarkably simple


perturbation


• Out of δgAB , δG4 and their derivatives, constructed gauge invariant


scalar Ψ obeying
(
D2 −M2


)
Ψ = 0, with M2 = −2 and q = 4


• Ψ is a scalar, (rather than pseudo-scalar), so


• ∆ = (1, 2)


∆ charge q Tc/µ found by


1 4 0.803688 GSH, Reall, Santos


1 2 0.347821 Donos, Gauntlett (2011)


2 4 0.0831536 Gauntlett, Sonner, Wiseman (2009)


2 2 0.00707295


Dominant instability/first mode to go unstable!!
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Implications & Further Directions


• previous studies of this embedding constructed non-linear hairy


solutions based off of sub-dominant instabilities


• these are sub-leading saddles, not relevant in thermodynamic limit


• need to backreact Ψ & construct non-linear solution!


• seems unlikely that Ψ fits into a consistent truncation, in which


case:


• non-linear phase necessarily involves infinite set of KK modes


• seems unusual from a condensed matter perspective → implications


for AdS/CMT?


• familiar from attempts to model d-wave superconductivity


holographically, Hartnett, Horowitz (2013), Kim, Taylor (2013)


• somewhat unusual: “lumpy” black holes do not often dominate


grand canonical ensemble (c.f. Santos/Way/Dias talks)
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Implications & Further Directions


• Application to landscape of superconducting membranes (Denef,


Hartnoll (2009): we specifically looked at the case KE6 = CP3, how


universal is this scalar Ψ (depends on spectrum of charged


harmonics on KE6)
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Thank You!
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