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Holographic Superconductors

Originally proposed by Hartnoll, Herzog, Horowitz (2008)

Consider 4D theory of Einstein-Maxwell-charged scalar

5= /d4xx/—g (R +6— %F2 — |Do)* — V(¢)) ., D,=V,—iqA,.

d 2
ds? = —fdt? + T + 2 (@ + dd), b= o(r). (1)
g
For appropriate (g, V), two classes of static, R?-invariant solutions:

1 AdS-Reissner Nordstrom (¢ = 0)
2 charged AdS black hole with scalar hair (¢ # 0)



Extensions and Successes

By considering more complicated matter content and geometries, this
approach has been extended in many ways, by many authors

Some examples:

e Drude behaviour

e non-linear conductivity

e lattice effects

e cuprate-based superconductors
e momentum relaxation

e anisotropies/disorder
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It is interesting and important to consider these models in the context of
precise AdS/CFT dualities

e bottom-up dualities are not fully specified or defined
e bottom-up models only retain subset of full 10/11D degrees of
freedom

AdS/CMT dualities derivable from 10D string theory/11D M-theory
e have the KK degrees of freedom
e not freely specified — constrained by compactification
e Does requiring an AdS/CMT duality to be “top-down" lead to any
important consequences/restrictions/effects?
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Consider 11D SUGRA
2K3,S = /d“x\/%(Rf %\G4|2) + %/Q A Gy A Gy,
simple Freund-Rubin solution:
ds?) = ds*(AdSs) + 4 [n ® n + ds*(CP?)], G4 = —3vol(AdS,) .

S7

Top-down embedding of Holographic Superconductor Gauntlett,
Sonner, Wiseman (2009)

ds?, = e *Vds? 4 4e?Vds?(CP?) + 4e*Y(n + A1) @ (n + A1)
3
Gy = —3e72(1 — [xP)vols + e x4 (x" Dx = xDX) A (0 + A1)
+ R A+ V3 x(n+A)AQ— éDx/\Q—&—cc

F=dA;, J=dA/2, eﬁuzl—%|x|2



Top-down framework

Resulting non-linear 4D effective action:

1
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Example of what's called a consistent truncation:

e only subset of all KK modes are retained

e Remarkable that this exists at all!
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Top-down framework

Resulting non-linear 4D effective action:

1
5= /d4x\/—g (R +6— 4 F2 = h(x)|Dx|* — V(x))
Example of what's called a consistent truncation:

e only subset of all KK modes are retained

e Remarkable that this exists at all!

Expanded around y =0,
1
§ = /d“x\/% (R+6 — ZF2 — |Dx? +2|>"<2>
{ has mass M2 = -2 (A =1,2) and g =14

X is a pseudo-scalar: A = 2 required by supersymmetry
Breitenlohner, Freedman (1982)
= unstable to developing scalar hair!



Superconducting Instabilities

near 2nd order phase transition, non-linearities negligible:
(D2 - M2)§ =0
o X = exp(—iwt)p(r)
e T > T.: only phase is Reissner Nordstrom (stable quasi-normal
mode)
e T = T.: linearized zero mode
e T < T.: hairy BH phase (linear instability)
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Superconducting Instabilities

A | charge g T/ found by

1 4 0.803688

1 2 0.347821

2 4 0.0831536 | Gauntlett, Sonner, Wiseman (2009)
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A | charge g T/ found by
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e Are there any other instabilities?
e we considered perturbations around 11D AdS-RN xS’ background

ORas — 59Giaicoe Gia) * + 14515 G* + 4 Grajeco Gy h

8aB e DEF ; CG _
+ &8 (2@ G — 4Geper GePEF h ) 0,
d*5G4+d(5*)G4—G4/\564:0.
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General Perturbations of 11D Embedding

e Are there any other instabilities?
e we considered perturbations around 11D AdS-RN xS’ background
5Ras — 286 Gy ™E + = hasG2 4 26 Ggyp P hEP
AB — £0G(a|cDE G|B) +144 AB +4 (AlEcD GB)P

8aB e DEF ; CG _
+144<2G G — 4Geper GePEF h ) 0,

dx0Gy + d(5*)G4 — Gy N0G, =0.
e in general won't fit in consistent truncation

e need to separate out the CIP* dependence: use charged CP*
harmonics (previously used in perturbations of Myers-Perry BHs)

e charged: (£, — im)égag =0

e from 4D perspective perturbation has charge g = m
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e Among many different CP? harmonics, found one remarkably simple
perturbation

e Out of dgag, 0G4 and their derivatives, constructed gauge invariant
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General Perturbations of 11D Embedding

e Among many different CP? harmonics, found one remarkably simple
perturbation

e Out of dgag, 0G4 and their derivatives, constructed gauge invariant
scalar W obeying (D? — M?) W =0, with M?> = —2 and q = 4

e WV is a scalar, (rather than pseudo-scalar), so

e A=(1,2)
A | charge q T/ found by
1 4 0.803688 GSH, Reall, Santos
1 2 0.347821 Donos, Gauntlett (2011)
2 4 0.0831536 | Gauntlett, Sonner, Wiseman (2009)
2 2 0.00707295

Dominant instability /first mode to go unstable!! ‘
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Implications & Further Directions

e previous studies of this embedding constructed non-linear hairy
solutions based off of sub-dominant instabilities
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Implications & Further Directions

e previous studies of this embedding constructed non-linear hairy
solutions based off of sub-dominant instabilities
e these are sub-leading saddles, not relevant in thermodynamic limit
e need to backreact W & construct non-linear solution!

e seems unlikely that W fits into a consistent truncation, in which
case:

e non-linear phase necessarily involves infinite set of KK modes

e seems unusual from a condensed matter perspective — implications
for AdS/CMT?

e familiar from attempts to model d-wave superconductivity
holographically, Hartnett, Horowitz (2013), Kim, Taylor (2013)

e somewhat unusual: “lumpy” black holes do not often dominate
grand canonical ensemble (c.f. Santos/Way/Dias talks)
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Implications & Further Directions

e Application to landscape of superconducting membranes (Denef,
Hartnoll (2009): we specifically looked at the case KE; = CP*, how
universal is this scalar W (depends on spectrum of charged
harmonics on KEg)
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Thank You!
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