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Holographic Superconductors

Originally proposed by Hartnoll, Herzog, Horowitz (2008)

Consider 4D theory of Einstein-Maxwell-charged scalar

S =

∫
d4x
√
−g
(
R + 6− 1

4
F 2 − |Dφ|2 − V (φ)

)
, Dµ = ∇µ−iqAµ .

ds2 = −fdt2 +
dr2

g
+ r2

(
dx21 + dx22

)
, φ = φ(r) . (1)

For appropriate (q,V ), two classes of static, R2-invariant solutions:

1 AdS-Reissner Nordstrom (φ = 0)

2 charged AdS black hole with scalar hair (φ 6= 0)

2



Extensions and Successes

By considering more complicated matter content and geometries, this

approach has been extended in many ways, by many authors

Some examples:

• Drude behaviour

• non-linear conductivity

• lattice effects

• cuprate-based superconductors

• momentum relaxation

• anisotropies/disorder

Bottom-up framework
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Top-down framework

It is interesting and important to consider these models in the context of

precise AdS/CFT dualities

• bottom-up dualities are not fully specified or defined

• bottom-up models only retain subset of full 10/11D degrees of

freedom

• AdS/CMT dualities derivable from 10D string theory/11D M-theory

• have the KK degrees of freedom

• not freely specified – constrained by compactification

• Does requiring an AdS/CMT duality to be “top-down” lead to any

important consequences/restrictions/effects?
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Top-down framework

Consider 11D SUGRA

2κ211S =

∫
d11x
√
−g
(
R − 1

2
|G4|2

)
+

1

6

∫
C3 ∧ G4 ∧ G4 ,

simple Freund-Rubin solution:

ds211 = ds2(AdS4) + 4
[
η ⊗ η + ds2(CP3)

]︸ ︷︷ ︸
S7

, G4 = −3vol(AdS4) .

Top-down embedding of Holographic Superconductor Gauntlett,

Sonner, Wiseman (2009)

ds211 = e−4Uds24 + 4e2Uds2(CP3) + 4e−4U(η + A1)⊗ (η + A1)

G4 =− 3e−12U(1− |χ|2)vol4 +
3i

4
e−12U ?4 (χ∗Dχ− χDχ∗) ∧ (η + A1)

+ F2 ∧ J +
√

3

[
χ(η + A1) ∧ Ω− i

4
Dχ ∧ Ω + cc

]
F = dA1, J = dA/2, e6U = 1− 3

4
|χ|2
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Top-down framework

Resulting non-linear 4D effective action:

S =

∫
d4x
√
−g
(
R + 6− 1

4
F 2 − h(χ)|Dχ|2 − V (χ)

)
Example of what’s called a consistent truncation:

• only subset of all KK modes are retained

• Remarkable that this exists at all!

Expanded around χ = 0,

S =

∫
d4x
√
−g
(
R + 6− 1

4
F 2 − |Dχ̃|2 + 2|χ̃|2

)
χ̃ has mass M2 = −2 (∆ = 1, 2) and q = 4

χ̃ is a pseudo-scalar: ∆ = 2 required by supersymmetry

Breitenlohner, Freedman (1982)

⇒ unstable to developing scalar hair!
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Superconducting Instabilities

near 2nd order phase transition, non-linearities negligible:

(D2 −M2)χ̃ = 0

• χ̃ = exp(−iωt)ϕ(r)

• T > Tc : only phase is Reissner Nordstrom (stable quasi-normal

mode)

• T = Tc : linearized zero mode

• T < Tc : hairy BH phase (linear instability)
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smaller ∆, larger q ⇒ stronger instability (higher Tc)

7



Superconducting Instabilities

near 2nd order phase transition, non-linearities negligible:

(D2 −M2)χ̃ = 0

• χ̃ = exp(−iωt)ϕ(r)

• T > Tc : only phase is Reissner Nordstrom (stable quasi-normal

mode)

• T = Tc : linearized zero mode

• T < Tc : hairy BH phase (linear instability)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

-1.5

-1.0

-0.5

0.0

T/μ

Im
[ω

]

Δ=1, q=4

Δ=1, q=2

Δ=2, q=4

Δ=2, q=2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

-1.0

-0.5

0.0

0.5

1.0

T/μ

R
e
[ω

]

Δ=1, q=4

Δ=1, q=2

Δ=2, q=4

Δ=2, q=2

smaller ∆, larger q ⇒ stronger instability (higher Tc)
7



Superconducting Instabilities

∆ charge q Tc/µ found by

1 4 0.803688

1 2 0.347821

2 4 0.0831536 Gauntlett, Sonner, Wiseman (2009)

2 2 0.00707295
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General Perturbations of 11D Embedding

• Are there any other instabilities?

• we considered perturbations around 11D AdS-RN×S7 background

δRAB −
1

6
δG(A|CDEG|B)

CDE +
1

144
hABG

2 +
1

4
G(A|ECDGB)P

CDhEP

+
gAB
144

(
2G · δG − 4GCDEFGG

DEFhCG
)

= 0 ,

d ? δG4 + d(δ?)G4 − G4 ∧ δG4 = 0 .

• in general won’t fit in consistent truncation

• need to separate out the CP3 dependence: use charged CP3

harmonics (previously used in perturbations of Myers-Perry BHs)

• charged: (Lη − im)δgAB = 0

• from 4D perspective perturbation has charge q = m
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General Perturbations of 11D Embedding

• Among many different CP3 harmonics, found one remarkably simple

perturbation

• Out of δgAB , δG4 and their derivatives, constructed gauge invariant

scalar Ψ obeying
(
D2 −M2

)
Ψ = 0, with M2 = −2 and q = 4

• Ψ is a scalar, (rather than pseudo-scalar), so

• ∆ = (1, 2)

∆ charge q Tc/µ found by

1 4 0.803688 GSH, Reall, Santos

1 2 0.347821 Donos, Gauntlett (2011)

2 4 0.0831536 Gauntlett, Sonner, Wiseman (2009)

2 2 0.00707295

Dominant instability/first mode to go unstable!!
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Implications & Further Directions

• previous studies of this embedding constructed non-linear hairy

solutions based off of sub-dominant instabilities

• these are sub-leading saddles, not relevant in thermodynamic limit

• need to backreact Ψ & construct non-linear solution!

• seems unlikely that Ψ fits into a consistent truncation, in which

case:

• non-linear phase necessarily involves infinite set of KK modes

• seems unusual from a condensed matter perspective → implications

for AdS/CMT?

• familiar from attempts to model d-wave superconductivity

holographically, Hartnett, Horowitz (2013), Kim, Taylor (2013)

• somewhat unusual: “lumpy” black holes do not often dominate

grand canonical ensemble (c.f. Santos/Way/Dias talks)
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Implications & Further Directions

• Application to landscape of superconducting membranes (Denef,

Hartnoll (2009): we specifically looked at the case KE6 = CP3, how

universal is this scalar Ψ (depends on spectrum of charged

harmonics on KE6)
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Thank You!

14


