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Entanglement is important to reconstruct a spacetime geometry

- Cutting out entanglement in QFT in curved space
  results in large back-reaction  

A.Anderson and B. DeWitt, Found. Phys. (1986)

"Does the Topology of Space Fluctuate?" 
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- Disentangling the quantum gravity d.o.f. of two 
  spacetime regions results in a pinching off of spacetime

M.  Van Raamsdonk, GRG (2010)

“Building up spacetime with quantum entanglement”
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E.B. and R.Myers, CQG (2012)

“On the Architecture of Spacetime Geometry”

Arguments from:  Black Hole thermodynamics (Bekenstein, Hawking)
                           Holographic entanglement (Ryu, Takayanagi; Hubeny, Rangamani, Takayanagi)
                           Loop Quantum Gravity (E.B.)
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- Entanglement entropy as a probe of the architecture of spacetime
  Area-law not generic, property of semiclassical states

Entanglement is the architecture of a spacetime geometry

SA(|0i) = 2⇡
Area(@A)
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Plan:

- defining the entanglement entropy in LQG

- squeezed vacua in LQG and area-law states

- perspectives
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Loop quantum gravity and oscillators

Bosonic representation of LQG [Girelli-Livine 05, Tambornino, Dupuis, Bonzom,…]

two oscillators per seed aAi , aAi
†

spin from oscillators |j,mi = (a0†)j+m

p
(j +m)!

(a1†)j�m

p
(j �m)!

|0i

[Schwinger ‘52]
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Defining entanglement in loop quantum gravity

Subsystem A  =  collection of oscillators [EB, Guglielmon, Hackl, Yokomizo 2016]

Entanglement entropy

A

B

SA(|si) ⌘ �TrA (⇢A log ⇢A)

where

⇢A = TrB(|sihs|)
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Defining entanglement in loop quantum gravity II

Subsystem A  =  collection of oscillators [EB, Guglielmon, Hackl, Yokomizo 2016]

A

B

C

Buffer zone C

Entanglement Entropy between macroscopic d.o.f.

SA,macro

(|si) ⌘ 1

2

H(⇢AB |⇢A ⌦ ⇢B) =
1

2

Tr(⇢AB log ⇢AB � ⇢AB log(⇢A ⌦ ⇢B))

=
1

2
(SA + SB � SAB)



F� =
Y

↵2�

⇣ Y

hi,ji2↵

✏AB aAi a
B
j

⌘m↵

: W� : |0i = F †
�|0i

� = {↵1,↵2, . . .}multi-loop

multi-loop state where

[EB-Guglielmon-Hackl-Yokomizo 1605.05356]

Loop expansion and the area law

loop-expansion of a state |�, si =
X

�

c�(s) F
†
�|0i

long-range correlation and area law
require c�1[�2(s) 6= c�1(s) c�2(s)
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See J.Guglielmon’s talk in D1



[EB-Guglielmon-Hackl-Yokomizo 1605.05356]

Squeezed vacua in LQG

Squeezed vacua are labeled by a spinor-correlation matrix 

long-ranged matrix 

leads to long-range correlations
in spin-spin, W-W,…
and to area law

�AB
ij

Loop expansion |�, �i =
X

�

c�(�) F
†
�|0i

with c�(�) =
1Q

`(2j`)!
Q

n(jn+1)!

Z
Z̄� e�zA

i z̄i
A+ 1

2�
AB
ij zi

Azj
B

Q
i,A

dzA
i ^dz̄A

i
⇡

Z� =
Y

↵2�

⇣ Y

hi,ji2↵

✏AB zAi z
B
j

⌘m↵

�AB
ij
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�AB
(mµ)(n⌫) = �

�
�mn + " fmn

�
✏CD ẑCµ ẑD⌫ ✏AB .

Squeezed vacua in loop quantum gravity 9

In order to introduce correlations between di↵erent nodes, we consider the squeezing

matrix �AB
(mµ)(n⌫) defined as

�AB
(mµ)(n⌫) = � (�mn + " fmn) ✏CD ẑCµ ẑ

D
⌫ ✏AB . (28)

For " = 0, this squeezing matrix falls in the class (24) and defines a state with no long-

range correlations. The term fmn introduces correlations between distinct nodes m and

n. The squeezed vacuum |�, �i = P�|�i is defined via the loop expansion (18). In the

small squeezing limit � ⌧ 1, the loop expansion results in the series where the term of

order �k is a sum over loops of length k,

|�, �i = |0i+ �4
X

c F † |0i+ (29)

+ �6
⇣X

c F † |0i+
X

c F † |0i+
X

c F † |0i
⌘

+ �8
⇣X

c F †F †|0i+ . . .
⌘

+O(�10).

The expansion is analogous to the one studied in lattice gauge theory [46] where is a

plaquette in the cubic lattice and , , are loops of length 6. The norm of the state is

h�, �|�, �i = 1+O(L�8), where L is the number of links in the lattice. The state |�, �i
can thus be taken to be normalized for �8 ⌧ 1/L.

Let us first consider the case of " = 0. The coe�cient c , i.e. the amplitude of a

single plaquette excitation in the µ ⌫-plane, can be computed explicitly and is given by

c = 1
22 34 exp(i 2(⇠µ + ⇠⌫)). The expectation value of a Wilson loop for a plaquette lying

in the µ⌫-plane is

h�, �|W |�, �i = �4

2 · 34 cos(2⇠µ + 2⇠⌫) +O(�8). (30)

This result supports the interpretation of the phases ⇠µ in the state as parametrizing

the holonomy of the Ashtekar connection. The expectation value of the spin operator

I` on a link is

h�, �| I` |�, �i = 2

38
�8 +O(�12) . (31)

In loop quantum gravity, states with definite spin are eigenstates of the area operator.

Identifying the spin operator with the area of a face of the cube, A` = I`,k we find that

the small-squeezing limit � ⌧ 1 corresponds to a cubulation with cubes having linear

size `cube(�) ⌘
phA`i =

p
2

34 �4. Together with the regular geometry of the Euclidean

cubulation, this result allows us to introduce a notion of metric distance between cubes,

dnm(�) ⌘
p
(n1 �m1)2 + (n2 �m2)2 + (n3 �m3)2 `cube(�) . (32)

A suitable generalization of the length operator in loop quantum gravity should

reproduce this distance as expectation value [44, 47].

k We use units 8⇡G� = 1 where G is Newton’s constant and � the Barbero-Immirzi parameter. The
results generalize to the operator-ordering A` =

p
I`(I` + 1).

� ⌧ 1

Correlations at the same node or nearby 
nodes encode the expectation value of local 
geometric operators and provide a classical 
background. 

Correlations between distant nodes encode 
quantum fluctuations over that background.

Correlations in a small squeezing expansion
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See N.Yokomizo’s talk in D1



Squeezed vacua in loop quantum gravity 11

(represented here as ).¶ Diagrammatically, we have H =
P

n NnH , where Nn is a

lapse function and physical states satisfy H |physi = 0. While a squeezed state |�, �i
does not solve the Hamiltonian constraint, its parameters can be chosen so that the

expectation value of H vanishes. This logic is often used for coherent states: the

classical parameters of a coherent state are chosen so that they select a configuration in

the truncated phase space of general relativity that satisfies the classical Hamiltonian

constraint. Using squeezed states, we can push this strategy one step forward and

require that both the expectation value and the correlation function of the Hamiltonian

constraint vanish on a squeezed vacuum

h�, �|H |�, �i = 0 , h�, �|H H 0 |�, �i = 0 8 , 0. (36)

This strategy selects a subset of squeezing matrices � that identify approximate physical

states. The node-wise components �AB
hi,ji identify a classical geometry providing a

background configuration, the components �AB
ij associated to distinct nodes restrict

the quantum fluctuations to be physical. This procedure can be understood as the

first two orders in a perturbative scheme where all the n-point correlation functions

of H are imposed to vanish. The requirement h�, �|H H 0 |�, �i ' 0 is crucial for

obtaining a regime e↵ectively described by a perturbative quantum field theory with

long-ranged correlations on a classical background. The pertubative analysis presented

in Sec. 5 shows that states (29) for a cubic lattice can encode a Minkowski background

geometry with quantum fluctuations having correlations that fall o↵ as the inverse-

distance-squared as expected for gravitons in the Minkowski vacuum state.

In the covariant approach to loop quantum gravity, states are associated to the

boundary of a spacetime region [6, 49] and the dynamics is encoded in the spinfoam path-

integral [50, 51]. A semiclassical spacetime is reconstructed via the choice of a boundary

state with prescribed one-point functions for local boundary observables. Two-point

correlation functions of boundary observables probe the propagation of quantum

fluctuations in the bulk. Already at the level of a single vertex it is manifest that a

non-trivial graviton propagator arises only if, besides peakedness, the boundary state

encodes correlations between distinct nodes. The states used in [23, 24, 25, 26, 27, 28]

can be considered as an early rudimentary version of the squeezed vacua introduced in

this article.

The relation between Regge’s triangulated spacetimes and spinfoams provides a

useful guide in the study of the classical limit of the theory [52, 53]. A classical

twisted geometry zAi reproduces a triangulation only if shape-matching conditions are

imposed. At the level of expectation values, the shape-matching conditions can be easily

satisfied by choosing a state peaked on a triangulation [38, 44, 45]. In general, however,

quantum fluctuations are uncorrelated and therefore do not respect this condition. By

choosing appropriately the squeezing matrix �AB
ij , squeezed vacua can have shape-

matched fluctuations. This condition is generally expected to be relevant for the

¶ Models with an ultra-local action at nodes are not considered here as they lead to no propagating
degrees of freedom. See [48].

- new approximation scheme for physical states

- graviton propagator and 
  boundary states in spin-foams

- class of states that satisfy 
  the area-law for the entanglement entropy

Perspectives
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- correlations between 
  macroscopic observables


