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The Penrose Inequality

A M : mass

M> 4 —
167 A : area of surface

Saturated by the event horizon of the Schwarzschild black hole.

Null shell version
; A geometric property of surfaces
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Toy version Penrose inequality in 2+1-dimensional anti-de Sitter
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The Proof

2+1-dimensional anti-de Sitter space as
a stack of Poincaré disks:
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Proof.
Once 64 has been calculated we observe that
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Thank you for listening!



