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Direct	  detection of	  gravitational waves:	  GW150914

properties of space-time in the strong-field, high-velocity
regime and confirm predictions of general relativity for the
nonlinear dynamics of highly disturbed black holes.

II. OBSERVATION

On September 14, 2015 at 09:50:45 UTC, the LIGO
Hanford, WA, and Livingston, LA, observatories detected

the coincident signal GW150914 shown in Fig. 1. The initial
detection was made by low-latency searches for generic
gravitational-wave transients [41] and was reported within
three minutes of data acquisition [43]. Subsequently,
matched-filter analyses that use relativistic models of com-
pact binary waveforms [44] recovered GW150914 as the
most significant event from each detector for the observa-
tions reported here. Occurring within the 10-ms intersite

FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right
column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered
with a 35–350 Hz bandpass filter to suppress large fluctuations outside the detectors’ most sensitive frequency band, and band-reject
filters to remove the strong instrumental spectral lines seen in the Fig. 3 spectra. Top row, left: H1 strain. Top row, right: L1 strain.
GW150914 arrived first at L1 and 6.9þ0.5

−0.4 ms later at H1; for a visual comparison, the H1 data are also shown, shifted in time by this
amount and inverted (to account for the detectors’ relative orientations). Second row: Gravitational-wave strain projected onto each
detector in the 35–350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those
recovered from GW150914 [37,38] confirmed to 99.9% by an independent calculation based on [15]. Shaded areas show 90% credible
regions for two independent waveform reconstructions. One (dark gray) models the signal using binary black hole template waveforms
[39]. The other (light gray) does not use an astrophysical model, but instead calculates the strain signal as a linear combination of
sine-Gaussian wavelets [40,41]. These reconstructions have a 94% overlap, as shown in [39]. Third row: Residuals after subtracting the
filtered numerical relativity waveform from the filtered detector time series. Bottom row:A time-frequency representation [42] of the
strain data, showing the signal frequency increasing over time.
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No-‐hair theorems and	  black hole spectroscopy
“In	  my	  entire	  scientific	  life,	  extending	  over	  forty-‐five	  years,	  the	  most	  
shattering	  experience has	  been	  the	  realization	  that	  an	  exact	  solution	  of	  
Einstein's	  equations	  of	  general	  relativity,	  discovered	  by	  the	  New	  Zealand	  
mathematician,	  Roy	  Kerr,	  provides	  the	  absolutely	  exact	  representation	  of	  
untold	  numbers	  of	  massive	  black	  holes	  that	  populate	  the	  universe.”	  
S.	  Chandrasekhar,	  The	  Mathematical	  Theory	  of	  Black	  Holes

“After	  the	  advent	  of	  gravitational	  wave	  astronomy,	  the	  observation	  of	  [the	  
black	  hole’s]	  resonant	  frequencies	  might	  finally	  provide	  direct	  evidence	  of	  
black	  holes	  with	  the	  same	  certainty	  as,	  say,	  the	  21	  cm	  line	  identifies	  
interstellar	  hydrogen.”	  
Steve	  Detweiler,	  ApJ 239,	  292	  (1980)
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FIG. 9: Minimum SNR required to resolve two modes, as function of the binary’s mass ratio q. If ρ > ρGLRT we can tell
the presence of a second mode in the waveform, if ρ > ρcrit we can resolve either the frequency or the damping time, and if
ρ > ρboth we can resolve both. Mode “1” is assumed to be the fundamental mode with l = m = 2; mode “2” is either the
fundamental mode with l = m = 3 (solid lines) or the fundamental mode with l = m = 4 (dashed lines).

V. CONCLUSIONS

In this paper we analyze the detectability of ringdown waves by Earth-based interferometers. Confirming and
extending previous analyses, we show that Advanced LIGO and EGO could detect intermediate-mass black holes of
mass up to ∼ 103 M⊙ out to a luminosity distance of a few Gpc.

Using recent results for the multipolar energy distribution from numerical relativity simulations of non-spinning
binary black hole mergers [10] to estimate the relative amplitude of the dominant multipolar components, we point
out that the single-mode templates presently used for ringdown searches in the LIGO data stream could produce
a significant event loss (> 10% in a large interval of black hole masses). A similar event loss should affect also
next-generation Earth-based detectors, as well as the planned space-based interferometer LISA.

Single-mode templates are useful for detection of low-mass systems, but they produce large errors in the estimated
values of the parameters (and especially of the quality factor). We estimate that, unfortunately, more than ∼ 106

templates would be needed for a single-stage multi-mode search. For this reason we recommend a “two stage” search
to save on computational costs: a single-mode template could be used to detect the signal, and a multi-mode template
(or even better, Prony methods [32]) could be used to estimate parameters once a detection has been made.

In Appendix B we introduce a criterion to decide for the presence of more than one mode in a ringdown signal.
By updating estimates of the critical signal-to-noise ratio required to resolve the frequencies of different QNMs using
results from numerical relativity, we show that second-generation Earth-based detectors and LISA both have the
potential to perform tests of the Kerr nature of astrophysical black holes.

In the future we plan to use numerical waveforms (possibly including spin effects) to refine our estimates. We also
plan to carry out Monte Carlo simulations to study the information that can be extracted on the source position and
orientation using a network of Earth-based detectors. The possibility to constrain the black hole spin’s direction from
the multipolar distribution of the merger-ringdown radiation should be particularly interesting (eg. for coincident
electromagnetic observations of jets that could be emitted along the black hole spin’s axis).
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q In	  GR,	  black	  holes	  oscillate	  
in	  a	  set	  of	  discrete
complex-‐frequencymodes	  
(quasinormal modes)
determined	  only	  by	  
mass	  M and	  spin	  a

q One	  mode: (M,a)

q Any	  other	  mode	  frequency:
No-‐hair	  theorem	  test

q Feasibility	  depends	  on	  SNR:
for	  nearly	  equal-‐mass	  binaries	  (q~1),	  need	  SNR>50	  or	  so
GW150914:	  ringdown SNR	  of	  ~7

Critical	  SNR	  for	  black hole spectroscopy
[EB+,	  gr-‐qc/0707.1202]



Timeline for	  commissioning of	  advanced detectors

LIGO-T15TBI–v1

dictates that we begin planning now for detectors that may begin operation 20 years from
now. A typical detector cycle includes: Simulation of ideas and concepts; Experimental
tests; Conceptual design and prototyping phases; Proposal and engineering; construction
and Installation; Commissioning and observing phases.

LIGO UPGRADE TIMELINE 

2030 2025 2020 2015 

Advanced 

A+ Sqz R&D 

Si, Cryo, 2um R&D Voyager – Current Facility 

 Explorer R&D + Design Explorer – New Facility 

Data 

Commissioning 
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Experiment 
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Color Code: 

A+ Coating, Suspension R&D 

Figure 2: Timeline for A+, LIGO Voyager and LIGO Cosmic Explorer. The timeline shown
is for a single LIGO detector. Upgrading/replacing each detector in the network would need
to be staged to optimize science outcomes of the prevailing global array. (NB: 2µm is used
to indicate any wavelength between 1.5µm and 2.2µm.)

We envisage potentially three detector epochs post Advanced LIGO baseline over the next
25 years with working titles A+, LIGO Voyager and LIGO Cosmic Explorer, see Figure 2.
The funds required to implement the upgrades are classified as: modest, less than $10M to
$20M; medium, $50M to $100M; major, greater than $150M. This strategy will be modified
according to signals observed, technology readiness and funds available.

2.1 A+

A+ would essentially be a modest cost upgrade to aLIGO, implemented in stages. It would
have a binary neutron star inspiral range approximately 1.7 times aLIGO (around 340 Mpc),
(see Figure 3). For A+ to begin operation around 2017-18, the first 2 phases of the detector
cycle (simulation and experimental testing) need to have already been completed for stage
1, and should be well underway for stage 2.

• frequency dependent squeezed light, implemented in stage 1,
• better mirror coatings and possibly slightly bigger laser beam sizes in the optical cav-
ities to reduce coating thermal noise, implemented in a second stage.

Miller et al [3] have shown that squeezing of the light’s quantum noise and coating thermal
noise reduction must be combined to achieve maximum benefit. The goal is to minimize

page 7

LIGO	  Instrument	  Science	  White	  Paper:
https://dcc.ligo.org/public/0120/T1500290/002/T1500290.pdf
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Figure 1. Noise PSDs for various space-based and advanced Earth-based detector designs. “NiAk” refers to non sky-averaged
eLISA PSDs with pessimistic (N1) and optimistic (N2) acceleration noise and armlength L = k Gm (cf. [18]). In the high-
frequency regime, we show noise PSDs for (top to bottom): the first AdLIGO observing run (O1); the expected sensitivity for
the second observing run (O2) and the Advanced LIGO design sensitivity (AdLIGO) [19]; the pessimistic and optimistic ranges
of AdLIGO designs with squeezing (A+, A++) [20] ; Vrt and Voyager [21]; Cosmic Explorer (CE1), basically A+ in a 40-km
facility [22]; CE2 wide and CE2 narrow, i.e. 40-km detectors with Voyager-type technology but di↵erent signal extraction
tuning [23]; and two possible Einstein Telescope designs, namely ET-B [24] and ET-D in the “xylophone” configuration [25].

noise PSD Sn(f), and we have used the approximation
4Qlmn � 1. The ringdown e�ciency for nonspinning
binaries is well approximated by the matched-filtering
estimate of Eq. (4.17) in [11]: ✏

rd

= 0.44⌘2. When us-
ing the best-fit parameters inferred for GW150914 [3],
Eq. (1) yields a ringdown SNR ⇢ ' 7.7 in O1 (in agree-
ment with [2]) and ⇢ ' 16.2 in AdLIGO.

Due to the orbital hang-up e↵ect, spinning binaries
with aligned (antialigned) spins radiate more (less) than
their nonspinning counterparts. The dominant spin-
induced correction to the radiated energy is proportional
to the sum of the components of the binary spins along
the orbital angular momentum [26, 30, 31]. We es-
timate this correction by rescaling the radiated energy
by the factor E

rad

(m
1

, m
2

, j
1

, j
2

)/E
rad

(m
1

, m
2

, 0, 0),
where the total energy radiated in the merger E

rad

is
computed using Eq. (18) of [26]. We find that spin-
dependent corrections change ⇢ by at most 50%.

It is now easy to understand why Einstein Telescope-
class detectors are needed to match the SNR of eLISA-
like detectors and to perform BH spectroscopy. The
quantity Flmn(j) is a number of order unity [12, 14].
The physical frequency is flmn ⇠ 1/Mz: for example,
an equal-mass merger of nonspinning BHs produces a
remnant with j ' 0.6864 and fundamental ringdown fre-
quency f

220

' 170.2(102 M�/Mz) Hz. So Earth-based
detectors are most sensitive to the ringdown of BHs with
Mz ⇠ 102M�, while space-based detectors are most sens-
itive to the ringdown of BHs with Mz ⇠ 106M�. The cru-
cial point is that, according to Eq. (1), ⇢ ⇠ M3/2 at fixed
redshift and noise PSD. As shown in Fig. 1, the “bucket”

of the N2A5 eLISA detector is at S1/2
N2A5

⇠ 10�21 Hz�1/2.
This noise level is ⇠ 102 (103, 104) times larger than
the best sensitivity of AdLIGO (Voyager, Einstein Tele-
scope), respectively. However eLISA BHs are ⇠ 104 times
more massive, yielding SNRs that are larger by a factor
⇠ 106. Astrophysical rate calculations are very di↵er-
ent in the two frequency regimes, but these qualitative
arguments explain why only Einstein Telescope-class de-
tectors will achieve SNRs nearly comparable to eLISA.

Astrophysical models. We estimate ringdown de-
tection rates for Earth-based interferometers (detection
rates for the full inspiral-merger-ringdown signal are
higher) using three population synthesis models com-
puted with the Startrack code: models M1, M3 and
M10. Models M1 and M3 are the “standard” and “pess-
imistic” models described in [8]. The “standard model”
M1 and model M10 predict very similar rates for Ad-
LIGO at design sensitivity. In both of these models,
compact objects receive natal kicks that decrease with
the compact object mass, with the most massive BHs
receiving no natal kicks. This decreases the probability
of massive BHs being ejected from the binary, increasing
merger rates. Model M1 allows for BH masses as high
as ⇠ 100 M�. On the contrary, model M10 includes the
e↵ect of pair-instability mass loss, which sets an upper
limit of ⇠ 50M� on the mass of stellar origin BHs [32].
In model M3, all compact objects (including BHs) ex-
perience high natal kicks drawn from a Maxwellian with
� = 265km s�1 based on the natal kick distribution
measured for single pulsars in our Galaxy [33]. The as-
sumption of large natal kicks leads to a severe reduction

Earth	  vs.	  space-‐based interferometers

f =	  170.2	  (102Msun)/M	  Hz
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We estimate the potential of present and future interferometric gravitational-wave detectors to
test the Kerr nature of black holes through “gravitational spectroscopy,” i.e. the measurement of
multiple quasinormal mode frequencies from the remnant of a black hole merger. Using population
synthesis models of the formation and evolution of stellar-mass black hole binaries, we find that
Voyager-class interferometers will be necessary to perform these tests. Gravitational spectroscopy
in the local Universe may become routine with the Einstein Telescope, but a 40-km facility like
Cosmic Explorer is necessary to go beyond z ⇠ 3. In contrast, eLISA-like detectors should carry out
a few – or even hundreds – of these tests every year, depending on uncertainties in massive black
hole formation models. Many space-based spectroscopical measurements will occur at high redshift,
testing the strong gravity dynamics of Kerr black holes in domains where cosmological corrections
to general relativity (if they occur in nature) must be significant.

Introduction. The first binary black hole (BH) mer-
ger signal detected by the LIGO Scientific Collaboration,
GW150914 [1], had a surprisingly high combined signal-
to-noise ratio (SNR) of 24 in the Hanford and Livingston
detectors. The quasinormal mode signal (“ringdown”)
from the merger remnant is consistent with the predic-
tions of general relativity (GR) for a Kerr BH, but it was
observed with a relatively low SNR ⇢ ⇠ 7 [2]. The large
masses of the binary components [3] have interesting im-
plications for the astrophysics of binary BH formation [4],
and the detection placed some constraints on the merger
rates of BH binaries in the Universe [5–8].

LISA Pathfinder was successfully launched in Decem-
ber 2015, paving the way for a space-based detector such
as eLISA [9, 10], which will observe mergers of massive
BHs throughout the Universe with very large SNRs and
test the Kerr nature of the merger remnants. The basic
idea is that the dominant ` = m = 2 resonant frequency
and damping time can be used to determine the rem-
nant’s mass M and dimensionless spin j = J/M2 (we
adopt geometrical units G = c = 1 throughout this Let-
ter.) In GR, all subdominant mode frequencies (e.g. the
modes with ` = m = 3 and ` = m = 4 [11]) are then
uniquely determined by M and j. The detection of sub-
dominant modes requires high SNR, but each mode will
provide one (or more) tests of the Kerr nature of the rem-
nant [12]. As first pointed out by Detweiler in 1980, grav-
itational waves allow us to do BH spectroscopy: “After
the advent of gravitational wave astronomy, the observa-
tion of these resonant frequencies might finally provide
direct evidence of BHs with the same certainty as, say,
the 21 cm line identifies interstellar hydrogen” [13].

Such high SNRs are known to be achievable with an
eLISA-like detector [14]. The surprisingly high SNR of

GW150914 raised the question whether current detect-
ors at design sensitivity should routinely observe ring-
down signals loud enough to perform gravitational spec-
troscopy. Leaving aside conceptual issues about ruling
out exotic alternatives [15–17], here we use our current
best understanding of the astrophysics of stellar-mass
and supermassive BHs to compute the rates of events
that would allow us to carry out spectroscopical tests.

Below we provide the details of our analysis, but the
main conclusions can be understood relying on the noise
power spectral densities (PSDs) Sn(f) of present and fu-
ture detectors, as shown and briefly reviewed in Fig. 1,
and simple back-of-the-envelope estimates.
Ringdown SNR. Consider the merger of two BHs with
source-frame masses (m

1

, m
2

), spins (j
1

, j
2

), total mass
M

tot

= m
1

+ m
2

, mass ratio q ⌘ m
1

/m
2

� 1 and sym-
metric mass ratio ⌘ = m

1

m
2

/M2

tot

. The remnant mass
and dimensionless spin, M and j = J/M2, can be com-
puted using the fitting formulas in [26] and [27], respect-
ively (see also [28, 29]). The ringdown SNR ⇢ can be es-
timated by following [14]. Including redshift factors and
substituting the Euclidean distance r by the luminosity
distance DL as appropriate, Eq. (3.16) of [14] implies
that ⇢ is well approximated by

⇢ =
�
eq

D
L

Flmn


8

5

M3

z ✏
rd

Sn(flmn)

�
1/2

, (1)

where Mz = M(1 + z). Fits of the mass-independent di-
mensionless frequency Flmn(j) ⌘ 2⇡Mzflmn and quality
factor Qlmn(j) are given in Eqs. (E1) and (E2) of [14].
The geometrical factor �

eq

= 1 for Michelson interfero-
meters with orthogonal arms, while �

eq

=
p

3/2 for an
eLISA-like detector (where the angle between the arms
is 60�). This expression involves the non sky-averaged

[EB+, 1605.09286]
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Figure 2. Rates of binary BH mergers that yield detectable ringdown signals (filled symbols) and allow for spectroscopical
tests (hollow symbols). Left panel: rates per year for Earth-based detectors of increasing sensitivity. Right panel: rates per
year for 6-link (solid) and 4-link (dashed) eLISA configurations with varying armlength and acceleration noise.

of BH-BH merger rates, and therefore model M3 should
be regarded as pessimistic [8]. In all of these models we
set the BH spins to zero, an assumption consistent with
estimates from GW150914 [4]. Even in the unrealistic
scenario where all BHs in the Universe were maximally
spinning, rates would increase by a factor . 3 (see Table
2 of [5]). Massive binaries with ringdowns detectable by
Earth-based interferometers could also be produced by
other mechanisms (see e.g. [34–37]), and therefore our
rates should be seen as lower bounds.

To estimate ringdown rates from massive BH mergers
detectable by eLISA we consider the same three models
(PopIII, Q3nod and Q3d) used in [18] and produced with
the semi-analytical approach of [38] (with incremental
improvements described in [39–41]). These models were
chosen to span the major sources of uncertainty a↵ect-
ing eLISA rates, namely (i) the nature of primordial BH
seeds (light seeds coming from the collapse of Pop III
stars in model PopIII; heavy seeds originating from pro-
togalactic disks in models Q3d and Q3nod), and (ii) the
delay between galaxy mergers and the merger of the BHs
at galactic centers (model Q3d includes this delay; model
Q3nod does not, and therefore yields higher detection
rates). In all three models the BH spin evolution is fol-
lowed self-consistently [38, 39]. For each event in the
catalog we compute ⇢ from Eq. (1), where ✏

rd

is rescaled
by a spin-dependent factor as necessary.

Detection rates. The ringdown detection rates (events
per year with ⇢ > 8 in a single detector) predicted by
models M1, M3, M10 (for stellar-mass BH binaries) and
PopIII, Q3d, Q3nod (for supermassive BH binaries) are
shown in Fig. 2 with filled symbols. For example, models

M1 (M10, M3) predict 3.0 (2.5, 0.57) events per year
with detectable ringdown in O1; 7.0 (5.8, 1.1) in O2; and
40 (35, 5.2) in AdLIGO. Model Q3d (Q3nod, PopIII)
predicts 38 (533, 13) events for a 6-link N2A5 eLISA
mission lasting 5 years, but in the plot we divided these
numbers by 5 to facilitate a more fair comparison in terms
of events per year.
BH spectroscopy. Suppose that we know that a signal
contains two (or possibly more) ringdown modes. We
expect the weaker mode to be hard to resolve if its amp-
litude is low and/or if the detector’s noise is large. The
critical SNR for the second mode to be resolvable can
be computed using the generalized likelihood ratio test
(GLRT) [42] under the following assumptions: (i) using
other criteria, we have already decided in favor of the
presence of one ringdown signal; (ii) the ringdown fre-
quencies and damping times, as well as the amplitude
of the dominant mode, are known. Then the critical
SNR ⇢

GLRT

to resolve a mode with either ` = m = 3
or ` = m = 4 from the dominant mode with ` = m = 2
is well fitted, for nonspinning binary BH mergers, by

⇢2, 3
GLRT

= 17.687 +
15.4597

q � 1
� 1.65242

q
, (2)

⇢2, 4
GLRT

= 37.9181 +
83.5778

q
+

44.1125

q2
+

50.1316

q3
.(3)

These fits reproduce the numerical results in Fig. 9 of
[42] within 0.3% when q 2 [1.01 � 100]. Spectroscopical
tests of the Kerr metric can be performed whenever either
mode is resolvable, i.e. ⇢ > ⇢

GLRT

⌘ min(⇢2, 3
GLRT

, ⇢2, 4
GLRT

).
The ` = m = 3 mode is usually easier to resolve than the
` = m = 4 mode, but the situation is reversed in the

Earth-‐based:	  detection rates
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of BH-BH merger rates, and therefore model M3 should
be regarded as pessimistic [8]. In all of these models we
set the BH spins to zero, an assumption consistent with
estimates from GW150914 [4]. Even in the unrealistic
scenario where all BHs in the Universe were maximally
spinning, rates would increase by a factor . 3 (see Table
2 of [5]). Massive binaries with ringdowns detectable by
Earth-based interferometers could also be produced by
other mechanisms (see e.g. [34–37]), and therefore our
rates should be seen as lower bounds.

To estimate ringdown rates from massive BH mergers
detectable by eLISA we consider the same three models
(PopIII, Q3nod and Q3d) used in [18] and produced with
the semi-analytical approach of [38] (with incremental
improvements described in [39–41]). These models were
chosen to span the major sources of uncertainty a↵ect-
ing eLISA rates, namely (i) the nature of primordial BH
seeds (light seeds coming from the collapse of Pop III
stars in model PopIII; heavy seeds originating from pro-
togalactic disks in models Q3d and Q3nod), and (ii) the
delay between galaxy mergers and the merger of the BHs
at galactic centers (model Q3d includes this delay; model
Q3nod does not, and therefore yields higher detection
rates). In all three models the BH spin evolution is fol-
lowed self-consistently [38, 39]. For each event in the
catalog we compute ⇢ from Eq. (1), where ✏

rd

is rescaled
by a spin-dependent factor as necessary.

Detection rates. The ringdown detection rates (events
per year with ⇢ > 8 in a single detector) predicted by
models M1, M3, M10 (for stellar-mass BH binaries) and
PopIII, Q3d, Q3nod (for supermassive BH binaries) are
shown in Fig. 2 with filled symbols. For example, models

M1 (M10, M3) predict 3.0 (2.5, 0.57) events per year
with detectable ringdown in O1; 7.0 (5.8, 1.1) in O2; and
40 (35, 5.2) in AdLIGO. Model Q3d (Q3nod, PopIII)
predicts 38 (533, 13) events for a 6-link N2A5 eLISA
mission lasting 5 years, but in the plot we divided these
numbers by 5 to facilitate a more fair comparison in terms
of events per year.
BH spectroscopy. Suppose that we know that a signal
contains two (or possibly more) ringdown modes. We
expect the weaker mode to be hard to resolve if its amp-
litude is low and/or if the detector’s noise is large. The
critical SNR for the second mode to be resolvable can
be computed using the generalized likelihood ratio test
(GLRT) [42] under the following assumptions: (i) using
other criteria, we have already decided in favor of the
presence of one ringdown signal; (ii) the ringdown fre-
quencies and damping times, as well as the amplitude
of the dominant mode, are known. Then the critical
SNR ⇢

GLRT

to resolve a mode with either ` = m = 3
or ` = m = 4 from the dominant mode with ` = m = 2
is well fitted, for nonspinning binary BH mergers, by

⇢2, 3
GLRT

= 17.687 +
15.4597

q � 1
� 1.65242

q
, (2)

⇢2, 4
GLRT

= 37.9181 +
83.5778

q
+

44.1125

q2
+

50.1316

q3
.(3)

These fits reproduce the numerical results in Fig. 9 of
[42] within 0.3% when q 2 [1.01 � 100]. Spectroscopical
tests of the Kerr metric can be performed whenever either
mode is resolvable, i.e. ⇢ > ⇢

GLRT

⌘ min(⇢2, 3
GLRT

, ⇢2, 4
GLRT

).
The ` = m = 3 mode is usually easier to resolve than the
` = m = 4 mode, but the situation is reversed in the
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Figure 3. Left: redshift distribution of events with ⇢ > 8 (top) and ⇢ > ⇢GLRT (bottom) for model M1 and Earth-based
detectors. In the bottom-left panel, the estimated AdLIGO rate (⇡ 2.6⇥ 10�2 events/year) is too low to display. Right: same
for models Q3nod, Q3d and PopIII. Di↵erent eLISA design choices have an almost irrelevant impact on the distributions.

comparable-mass limit q ! 1, where the amplitude of
odd-m modes is suppressed [11, 43]. Extreme mass-ratio
calculations [44] and a preliminary analysis of numerical
waveforms show that the ratio of mode amplitudes is, to
a good accuracy, spin-independent, therefore this SNR
threshold is adequate for our present purpose.

The rates of events with ⇢ > ⇢
GLRT

are shown in
Fig. 2 by curves with hollow symbols. The key obser-
vation here is that, although ringdown detections should
be routine already in AdLIGO, high-SNR events are ex-
ceedingly rare: reaching the threshold of ⇠ 1 event/year
requires Voyager-class detectors, while sensitivities com-
parable to Einstein Telescope are needed to carry out
such tests routinely. This is not the case for space-based
interferometers: typical ringdown detections have such
high SNR that ⇡ 50% or more of them can be used to
do BH spectroscopy. The total number of eLISA detec-
tions and spectroscopic tests depends on the underlying
BH formation model, but it is remarkably independent of
detector design (although the N1A1 design would sens-
ibly reduce rates in the most optimistic models).

Perhaps the most striking di↵erence between Earth-
and space-based detectors is that a very large fraction
of the “spectroscopically significant” events will occur at
cosmological redshift in eLISA, but not in Einstein tele-
scope. This is shown very clearly in Fig. 3, where we
plot redshift histograms of detected events (top panel)
and of events that allow for spectroscopy (bottom panel).
eLISA can do spectroscopy out to z ⇡ 5 (10, or even 20!)
for PopIII (Q3d, Q3nod) models, while even the Einstein
Telescope is limited to z . 3. Only 40-km detectors with
cosmological reach, such as Cosmic Explorer [22, 23],

would be able to do spectroscopy at z ⇡ 10.

Conclusions. Using our best understanding of the
formation of field binaries, we predict that AdLIGO at
design sensitivity should observe several ringdown events
per year. However routine spectroscopical tests of the
dynamics of Kerr BHs will require the construction and
operation of detectors such as the Einstein Telescope [45–
47], and 40-km detectors [22, 23] will be necessary to
reach cosmological distances. Many of the mergers for
which eLISA can do BH spectroscopy will be located at
z � 1. These systems will test GR in qualitatively dif-
ferent regimes than any low-z observation by AdLIGO:
BH spectroscopy with eLISA will test whether gravity
behaves locally like GR even at the very early epochs of
our Universe, possibly placing constraints on proposed
extensions of Einstein’s theory [48].

Given the time lines for the construction and operation
of these detectors, it is likely that the first instances of
BH spectroscopy will come from a space-based detector.
This conclusion is based on the simple GLRT criterion
introduced in [42], and it is possible that better data
analysis techniques (such as the Bayesian methods ad-
vocated in [46, 47]) could improve our prospects for grav-
itational spectroscopy with Earth-based interferometers.
We hope that our work will stimulate the development
of these techniques and their use on actual data.

As shown in Fig. 2, di↵erences in rates between models
M1 and M10 become large enough to be detectable in
A+. We estimate 34 (29) ringdown events per year for
M1 (M10) in A+, and 89 (66) events per year in A++.
Rate di↵erences are even larger when we consider the
complete signal. Therefore, while the implementation

Earth-‐based:	  redshift distribution
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comparable-mass limit q ! 1, where the amplitude of
odd-m modes is suppressed [11, 43]. Extreme mass-ratio
calculations [44] and a preliminary analysis of numerical
waveforms show that the ratio of mode amplitudes is, to
a good accuracy, spin-independent, therefore this SNR
threshold is adequate for our present purpose.

The rates of events with ⇢ > ⇢
GLRT

are shown in
Fig. 2 by curves with hollow symbols. The key obser-
vation here is that, although ringdown detections should
be routine already in AdLIGO, high-SNR events are ex-
ceedingly rare: reaching the threshold of ⇠ 1 event/year
requires Voyager-class detectors, while sensitivities com-
parable to Einstein Telescope are needed to carry out
such tests routinely. This is not the case for space-based
interferometers: typical ringdown detections have such
high SNR that ⇡ 50% or more of them can be used to
do BH spectroscopy. The total number of eLISA detec-
tions and spectroscopic tests depends on the underlying
BH formation model, but it is remarkably independent of
detector design (although the N1A1 design would sens-
ibly reduce rates in the most optimistic models).

Perhaps the most striking di↵erence between Earth-
and space-based detectors is that a very large fraction
of the “spectroscopically significant” events will occur at
cosmological redshift in eLISA, but not in Einstein tele-
scope. This is shown very clearly in Fig. 3, where we
plot redshift histograms of detected events (top panel)
and of events that allow for spectroscopy (bottom panel).
eLISA can do spectroscopy out to z ⇡ 5 (10, or even 20!)
for PopIII (Q3d, Q3nod) models, while even the Einstein
Telescope is limited to z . 3. Only 40-km detectors with
cosmological reach, such as Cosmic Explorer [22, 23],

would be able to do spectroscopy at z ⇡ 10.

Conclusions. Using our best understanding of the
formation of field binaries, we predict that AdLIGO at
design sensitivity should observe several ringdown events
per year. However routine spectroscopical tests of the
dynamics of Kerr BHs will require the construction and
operation of detectors such as the Einstein Telescope [45–
47], and 40-km detectors [22, 23] will be necessary to
reach cosmological distances. Many of the mergers for
which eLISA can do BH spectroscopy will be located at
z � 1. These systems will test GR in qualitatively dif-
ferent regimes than any low-z observation by AdLIGO:
BH spectroscopy with eLISA will test whether gravity
behaves locally like GR even at the very early epochs of
our Universe, possibly placing constraints on proposed
extensions of Einstein’s theory [48].

Given the time lines for the construction and operation
of these detectors, it is likely that the first instances of
BH spectroscopy will come from a space-based detector.
This conclusion is based on the simple GLRT criterion
introduced in [42], and it is possible that better data
analysis techniques (such as the Bayesian methods ad-
vocated in [46, 47]) could improve our prospects for grav-
itational spectroscopy with Earth-based interferometers.
We hope that our work will stimulate the development
of these techniques and their use on actual data.

As shown in Fig. 2, di↵erences in rates between models
M1 and M10 become large enough to be detectable in
A+. We estimate 34 (29) ringdown events per year for
M1 (M10) in A+, and 89 (66) events per year in A++.
Rate di↵erences are even larger when we consider the
complete signal. Therefore, while the implementation
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FIG. 1: The multi-band GW astronomy concept. The violet lines are the total sensitivity curves (assuming two Michelson) of
three eLISA configurations; from top to bottom N2A1, N2A2, N2A5 (from [11]). The orange lines are the current (dashed) and
design (solid) aLIGO sensitivity curves. The lines in di↵erent blue flavours represent characteristic amplitude tracks of BHB
sources for a realization of the flat population model (see main text) seen with S/N> 1 in the N2A2 configuration (highlighted
as the thick eLISA middle curve), integrated assuming a five year mission lifetime. The light turquoise lines clustering around
0.01Hz are sources seen in eLISA with S/N< 5 (for clarity, we down-sampled them by a factor of 20 and we removed sources
extending to the aLIGO band); the light and dark blue curves crossing to the aLIGO band are sources with S/N> 5 and
S/N> 8 respectively in eLISA; the dark blue marks in the upper left corner are other sources with S/N> 8 in eLISA but
not crossing to the aLIGO band within the mission lifetime. For comparison, the characteristic amplitude track completed by
GW150914 is shown as a black solid line, and the chart at the top of the figure indicates the frequency progression of this
particular source in the last 10 years before coalescence. The shaded area at the bottom left marks the expected confusion
noise level produced by the same population model (median, 68% and 95% intervals are shown). The waveforms shown are
second order post-Newtonian inspirals phenomenologically adjusted with a Lorentzian function to describe the ringdown.

0.73) [12], and dtr/dfr describes the temporal evolution
of the source due to GW emission assuming circular or-
bits:

dtr
dfr

=
5c5

96⇡8/3
(GMr)

�5/3f�11/3
r . (3)

As mentioned above, for both the flat and salp models,
probability distributions of the intrinsic rate R are given
in [3] (see their figure 5). We make 200 Monte Carlo
draws from each of those, use equation (2) to numeri-
cally construct the cosmological distribution of emitting
sources as a function of mass redshift and frequency, and
make a further Monte Carlo draw from the latter. For
each BHB mass model, the process yields 200 di↵erent
realizations of the instantaneous BHB population emit-
ting GWs in the Universe. We limit our investigation
to 0 < z < 2 and fr > 10�4Hz, su�cient to cover all
the relevant sources emitting in the eLISA and aLIGO
bands.

Signal-to-noise ratio computation. An in-depth study

of possible eLISA baselines in under investigation [11],
and the novel piece of information we provide here might
prove critical in the selection of the final design. There-
fore, following [11], we consider six baselines featuring
one two or five million km arm-length (A1, A2, A5) and
two possible low frequency noises – namely the LISA
Pathfinder goal (N1) and the original LISA requirement
(N2)–. We assume a two Michelson (six laser links) con-
figuration, commenting on the e↵ect of dropping one arm
(going to four links) on the results. We assume a five year
mission duration.

In the detector frame, each source is characterized
by its redshifted quantities M = Mr(1 + z) and f =
fr/(1 + z). During the five years of eLISA observations,
the binary emits GWs shifting upwards in frequency from
an initial value fi, to an ff that can be computed by in-
tegrating equation (3) for a time tr = 5yr/(1 + z). The
sky and polarization averaged S/N in the eLISA detector
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FIG. 3: Parameter estimation accuracy from eLISA observa-
tions. Top left: accuracy in the determination of the BHB
coalescence time; top right: sky localization of the sources;
bottom left: relative error in the determination of the chirp
mass M; bottom right: relative error in the determination
of the symmetric mass ratio ⌘ = M1M2/(M1 + M2)

2. His-
tograms show normalized distributions obtained from a Monte
Carlo realization of 1000 sources observed with S/N> 8 in the
N2A5 configuration for five years of mission operation. Esti-
mates were obtained via Fisher Matrix analysis using second
order Post-Newtonian non spinning waveforms [13] and the
full time-dependent eLISA response function.

The plot was constructed by running the Fisher Matrix
code on a sub-sample of 1000 sources coalescing in five
years and resulting in an S/N> 8 in the eLISA detector
(configuration N2A5, but distributions are largely insen-
sitive to the specific design), taken from our 200 Monte
Carlo realizations of the flat BHB mass model. The
exquisite precision is due to the many thousands of wave
cycles emitted by the system convoluted to the multiple
orbits completed by the eLISA detector over five years.
Given the simple waveform and detector response mod-
els, our parameter error estimates should be only taken
as indicative of the realistic capabilities of an eLISA-type
detector. However, adding complexity to the waveform
and to the response function generally improves measure-
ment accuracy. Typically few weeks before appearance in
the aLIGO band, the relative errors in the mass measure-
ments is better than 1%, the sky location is better than
1deg2, and the coalescence time can be predicted within
less than ten seconds. These figures open the possibility
to mutually enhance the capabilities of aLIGO and eLISA
and to open the era of multi-band GW astronomy.

Electromagnetic counterparts to BHB coalescences are
theoretically not expected, unless matter (likely ion-
ized hot gas in form of some accretion disk) is also

present. However, a tentative gamma signal coincident
with GW150914 has been detected by the Gamma-ray
Burst Monitor (GBM) on board Fermi [15]. This is a
nearly all-sky monitor with necessarily limited sensitiv-
ity and angular resolution. The fact that no alert can
be sent to satellites and telescopes prior to coalescence
fundamentally limits the possibility real-time electromag-
netic observations of aLIGO BHBs by telescopes with
more restricted field of view and higher sensitivity [16–
18]. However, for up to a couple of hundred sources in
the best configuration, eLISA can alert aLIGO and all
possible electromagnetic probes weeks in advance, pro-
viding the exact location and time of the merger. All the
most sensitive probes covering the sky from the radio to
the �-ray, can then be pre-pointed securing the detection
of a prompt counterpart at any wavelength, should there
be one. This eventuality will open new horizons in mul-
timessenger astronomy, also providing a new population
of standard sirens [19] for cosmology. Moreover, eLISA
will determine the individual masses of the two systems
within < 1% accuracy, possibly constraining also their
spins. This wealth on information can be used to pin-
down the pre-merger properties of the BHB to a level
that is unthinkable with aLIGO only, tremendously im-
proving the feasibility of fundamental physics and strong
gravity tests [20, 21]. On the other hand, aLIGO will
likely see BHBmergers that have an S/N< 8 in the eLISA
data-stream (see figure 1). Those can be used as triggers
to search back in the eLISA data for sub-threshold sig-
nals. Equivalently, one can flag all events with a S/N
much lower than the confident detection threshold in the
eLISA data-stream, and wait for their aLIGO confirma-
tion. Lastly, these systems provide a unique consistency
test-bed for the two instruments, that can be the ulti-
mate cross-band check vetting their mutual calibration.

Below the resolvable sources, there is an unresolved
confusion noise of the same nature of the one gener-
ated by WD-WD binaries [22]. We find that this confu-
sion noise will a↵ect the bottom of the eLISA sensitivity
curve only for optimistic BHB merger rates in combina-
tion with the best detector configuration (see figure 1),
and therefore should note pose a serious issue for the de-
tectability of other low S/N sources such as extreme mass
ratio inspirals [23]. However, only in six link baselines,
laser links can be combined appropriately to make the
background measurement feasible [24] even without the
standard cross correlation analysis [25]. The expected
S/N, computed via equation (7), is in the range 1� 200,
depending on the baseline. We caution, however, that we
assumed a cosmologically non-evolving BHB merger rate.
Although this might by a safe assumption at the low red-
shifts relevant to the statistics of resolvable source, it is
almost certainly not at z ⇡ 2� 3 [26], where sources still
contribute significantly to the unresolved background.
Therefore, this signal can be used in combination to the
information derived by individually resolvable sources to
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the field and cluster scenarios. However, Sesana (2016) showed that,
depending on the intrinsic rates (which are only loosely constrained
by current detections) and on the detector baseline, the evolved
Laser Interferometer Space Antenna (eLISA) will observe few to
few thousands BHBs (see also Kyutoku & Seto 2016). Because of
the much lower frequency band, eLISA will detect these systems
before circularization, and in many cases it will be able to measure
their eccentricity (Nishizawa et al. 2016).

In this Letter we use Bayesian model selection to demonstrate
how eLISA eccentricity measurement can conclusively distinguish
between di�erent BHB formation channels. In Section II we con-
sider three models for BHB formation, and discuss the eccentricity
distributions predicted by these models in the eLISA band1. In Sec-
tion III we simulate and analyse eLISA observations using various
models and detector baselines. In Section IV we present our main
results, and in Section V we discuss their implications. We assume
a concordance ⇤CDM cosmology with h = 0.679, ⌦M = 0.306
and ⌦⇤ = 0.694 (Planck Collaboration et al. 2015).

2 ASTROPHYSICAL MODELS AND ECCENTRICITY
DISTRIBUTIONS

We consider a BHB population merging at a rate R, character-
ized by a chirp mass probability distribution p(Mr ) – where
Mr ⌘ (M1,r M2,r )3/5/(M1,r +M2,r )1/5, and a subscript r denotes
quantities in the rest frame of the source – and by an eccentricity
probability distribution p(e⇤) at some reference frequency f⇤ close
to coalescence (we set f⇤ = 10Hz). If p(e⇤) depends only on the
BHB formation route, but not on chirp mass and redshift, the merger
rate density per unit mass and eccentricity is given by

d3n
dMr dtr de⇤

= p(Mr ) p(e⇤) R . (1)

Equation (1) can be then converted into a number of sources emitting
per unit mass, redshift and frequency at any time via

d4N
dMr dzd fr de⇤

=
d3n

dMr dtr de⇤
dV
dz

dtr
dfr

(e(e⇤, f )), (2)

where dV/dz is the standard volume shell per unit redshift, and

dtr
dfr

(e(e⇤, f )) =
5c5

96⇡8/3 (GMr )�5/3 f �11/3
r

1
F (e(e⇤, f ))

. (3)

Here

F (e(e⇤, f )) = (1 � e2)�7/2
 
1 + 73

24
e2 +

37
96

e4
!
, (4)

and e(e⇤, f ) is computed by finding the root of

f
f⇤
=

2666664
1 � e2⇤
1 � e2

 
e
e⇤

!12/19 *
,

1 + 121
304 e2

1 + 121
304 e2⇤

+
-
870/22993777775

�3/2

. (5)

We can construct a population of systems potentially observable by
eLISA by Monte Carlo sampling from the distribution in equation
(2) using appropriate distribution functions for p(Mr ) and p(e⇤).
For the mass distribution we employ the “flat” mass function of
Abbott et al. (2016f), i.e., we assume that the two BH masses are
independently drawn from a log-flat distribution in the range 5M� <
M1,2,r < 100M� , restricting the total BHB mass to the be less than

1 For a detailed astrophysical comparison of BHBs formed in galactic fields
and globular clusters observable by eLISA, see Breivik et al. (2016).

Figure 1. Eccentricity distributions predicted by the field (orange), cluster
(turquoise) and MBH (purple) scenarios. The top panel show the distribu-
tion at the reference frequency f⇤ = 10Hz, while the bottom panel is the
observable distribution p(e0) evolved “back in time” to f0 = 0.01Hz.

100M� . For the eccentricity distribution we consider, as a proof of
concept, three popular BHB formation scenarios:

(i) Model field: this is the default BHB field formation scenario
of Kowalska et al. (2011), taken to be representative of BHBs
resulting from stellar evolution.

(ii) Model cluster: globular clusters e�ciently form BHBs via
dynamical capture. Most of these BHBs are ejected in the field and
evolve in isolation until they eventually merge. Because of their
dynamical nature, BHBs typically form with a thermal eccentric-
ity distribution. A comprehensive study of this scenario has been
performed by Rodriguez et al. (2016c).

(iii) Model MBH. BHs and BHBs are expected to cluster in galac-
tic nuclei because of strong mass segregation. In this case, binaries
within the sphere of influence of the central MBH undergo Kozai-
Lidov resonances, forming triplets in which the external perturber
is the MBH itself. This scenario has been investigated in Antonini
& Perets (2012), and it results in high BHB eccentricities.

The eccentricity distributions at f⇤ = 10Hz, as predicted by
these models, are shown in the top panel of Figure 1. In the bottom
panel we propagate these distributions “back in time” to obtain
p(e0) at frequency f0 = 0.01Hz, where most eLISA detections are
expected to occur. In this calculation we must take into account the
fact that highly eccentric binaries evolve more quickly – by a factor
F (e) – than circular ones, so that only a few highly eccentric binaries
will be observable in the eLISA band for a given coalescence rate.

3 SIMULATIONS AND ANALYSIS TOOLS

We consider two eLISA baselines, N2A2 and N2A5 in the notation
of Klein et al. (2016). We adopt the noise level (N2) recently demon-
strated by LISA Pathfinder (LPF, Armano et al. 2016) and, follow-
ing the recommendations of the GOAT committee2, we choose
armlengths of two (A2) and five (A5) million kilometers. We also
explore two nominal mission lifetimes (2 and 5 years) for a total of
four mission baselines: N2A2-2y, N2A2-5y, N2A5-2y, N2A5-5y.

2
http://www.cosmos.esa.int/web/goat
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of the sources having e < 10−5. The classic results by
Peters and Mathews [79] imply that, so long as e ≪ 1,
e ∼ f−19/18 ≈ f−1 (see e.g. Fig. 1 of [80]). Here we focus
on sources emitting at f > f0 = 10−2 Hz in the eLISA
band. Their typical eccentricity at frequency f ∼ f0
is thus e ∼ 10−3, with most sources having e <∼ 10−2.
Almost all relevant eLISA sources (both resolvable and
unresolvable) are at f > 10−3 Hz, and their expected
eccentricity is e <∼ 0.1. These numbers are large enough
to require eccentric templates for matched filtering, but
the amplitude and phasing of the signal for binaries with
e <∼ 0.1 can be treated in a small-eccentricity approx-
imation. To summarize: extrapolating the results in
Ref. [70] to lower frequencies, we expect dynamically
formed BH binaries to have small but non-negligible ec-
centricities e <∼ 0.1 in the eLISA band, and therefore
a small-eccentricity approximation is adequate to study
this problem.

B. Executive summary

Consider a binary system with component masses (in
the source frame) m1 and m2, total mass M = m1 +m2,
symmetric mass ratio η = m1m2/M2 and chirp mass
M = η3/5M . Assume that the binary is located at red-
shift z – or equivalently, for a given cosmological model,
at luminosity distance DL = DL(z) – so that the red-
shifted chirp mass Mz = (1 + z)M, the redshifted total
massMz = (1+z)M , and similarly for the other mass pa-
rameters. Two angles (θ̄S, φ̄S) specify the direction of the
source in the solar barycenter frame, and for convenience
we introduce R = 1AU. Let tc be the coalescence time,
φc the coalescence phase, L the binary’s orbital angular
momentum vector (with L̂ = L/|L| the corresponding
unit vector), and N̂ a unit vector pointing in the source
direction as measured in the solar barycenter frame. Fur-
thermore, let χ = f/f0 be the frequency normalized to
a reference frequency – here chosen to be f0 = 10−2Hz
– where the eccentricity is e(f0) = e0, and introduce the
standard post-Newtonian parameter x = (πMzf)2/3.
We model eLISA as two independent interferometers

with non-orthogonal arms. The sky-averaged noise power
spectral density for each of the two interferometers is de-
noted by NiAj, as in [81]; here i = 1, 2 refers to different
acceleration noise baselines, and j = 1, 5 denotes differ-
ent armlengths (1 or 5 Gm). The observation time Tobs is
chosen to be either 5 or 2 years. This choice significantly
affects the signal-to-noise ratio (SNR): if, following [7],
we adopt a fiducial 5-year observation time and assume
that the binary merges at the end of the observation, the
initial frequency of the binary will be

fmin = 0.015

(

30M⊙

Mz

)5/8 ( 5 yr

Tobs

)3/8

Hz , (1)

where we scaled the result by the estimated redshifted
chirp mass of GW150914. Our SNR and Fisher ma-
trix calculations are truncated at a maximum frequency
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Figure 1. Parameter estimation errors on the eccentricity e0
at frequency f0 = 10−2 Hz using “full eccentric” waveforms
for nonspinning binaries. DIfferent panels refer to catalogs
with e0 = 0.1, 0.01 and 0.001 (from top to bottom). The
various linestyles refer to different noise curves and observa-
tion times: N2A5 and Tobs = 5yrs (solid black), N2A1 and
Tobs = 5 yrs (dashed red), N2A5 and Tobs = 2 yrs (dotted
green), N2A1 and Tobs = 2yrs (dash-dotted blue).

fmax = 1Hz, beyond which the eLISA noise is not ex-
pected to be under control.

Our main results on eccentricity measurements are
summarized in Figs. 1 and 2. Their behavior can be
understood, at least qualitatively, using simple scaling
arguments. Neglecting correlations between parameters,
in a Fisher matrix approximation the error on e0 is

∆e0 ∼

[

f
|∂e0 h̃|2

Sh

]−1/2

, (2)

where h̃ denotes the Fourier transform of the GW ampli-
tude and Sh(f) is the noise power spectral density of the
detector. To leading order in a small-eccentricity expan-
sion (what we call the “restricted eccentric waveform” in
Section III A below) and in the stationary phase approx-
imation, corrections due to the eccentricity enter only in
the GW phase through the term proportional to e20 in

Eq. (8) below, and therefore ∂e0 h̃ = M−5/6
z f−89/18e0.

Let us approximate the frequency dependence of the
noise power spectral density by a power law, Sh ∼ f2α.
Since the dominant contribution to the Fisher matrix

Eccentricity:	  measurable if e0>10-‐3	  at f=10-‐2Hz

[Nishizawa+,1603.04075]

e0=0.1

e0=0.01

e0=0.001



Field	  or	  cluster	  formation? eLISA measurements of eccentric binaries 5

3� 5�
eLISA base Nobs N50 N90 N50 N90

N2A2-2y 11-78 35 >100 95 >100
N2A5-2y 85-595 34 95 80 >100
N2A2-5y 45-310 25 60 61 100
N2A5-5y 330-2350 25 62 60 100

Table 1. Expected number of sources (column 2) for each eLISA baseline
(column 1), compared with the number of observations needed to distinguish
between models field and cluster at a given confidence threshold in 50%
(N50) and 90% (N90) of the cases (columns 3-6).

5 DISCUSSION AND OUTLOOK

For the log-flat distribution assumed here, the Advanced LIGO
observations imply a 90% credible interval for the merger rate of
R = [10, 70] yr�1Gpc�3 (Abbott et al. 2016b). The resulting range
in Nobs is reported in Table 1 for the di�erent baselines, and it
should be compared to the number of events needed to discriminate
among di�erent models at a desired confidence threshold. Model
MBH can be identified by all the configurations with just a few BHB
observations, therefore it is not reported in the table. Discriminating
between the cluster and field scenarios requires tens of events, and
only the baseline N2A5-5y can guarantee a 5� confidence with
90% probability. Baselines N2A2-5y and N2A5-2y can distinguish
among these models at the 3� level, but this may not be possible
should the event rate lean toward the lower limit of the allowed
range. The N2A2-2y baseline performs relatively poorly, and it may
not deliver enough detections to pin down the formation mechanism.

These results highlight the importance of aiming for a five-year
mission with the longest possible armlength. However, we should
bear in mind some limitations of our proof-of-principle analysis.
First of all, we selected three representative models from the lit-
erature: this does not fully capture all of the relevant physics af-
fecting the eccentricity distribution of BHBs. For example, several
variations of the “fiducial” model of Kowalska et al. (2011) re-
sult in slightly di�erent eccentricity distributions. Our analysis can
be applied systematically to any such variation, assessing to what
extent the underlying physics can be constrained. Secondly, we as-
sumed the eccentricity distribution to be independent of masses
and redshifts. In practice, di�erent formation channels will result
in di�erent mass-eccentricity (and possibly redshift-eccentricity,
or spin-eccentricity) correlations, that can be exploited in a multi-
dimensional analysis to enhance the discriminating power of the
observations. Finally, it is very likely that several di�erent forma-
tion channels operate at the same time in the Universe. In the context
of massive BHB observations, Sesana et al. (2011) studied whether
eLISA could identify a superposition of distinct formation channels
from the statistical properties of the observed population. A similar
analysis in the present context is an interesting topic for future work.
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Predictions	  may	  be	  pessimistic!
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ü Black	  hole	  spectroscopy:

On	  Earth,	  despite	  the	  high	  SNR	  of	  GW150914,	  we	  need:
Voyager-‐class	  detectors	  for	  significant	  rates
Einstein	  Telescope	  for	  z~3
Cosmic	  Explorer	  for	  large	  z

…or	  better	  data	  analysis!
null	  tests?	  [Ghosh+,	  1602.02453]
stacking?	  [Lasky+,	  1605.01415]

LISA can	  do	  this	  with	  almost	  all	  detected	  systems	  (few-‐hundreds)

ü Promise	  of	  multiband	  astronomy:

Early	  warning	  [Sesana]
Improved	  parameter	  estimation	  [Vitale]
Improved	  GR	  tests	  [Barausse+]
BH	  formation	  via	  eccentricity	  in	  LISA	  band	  [Nishizawa+,	  Breivik+,	  Seto+]

Summary
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Pathfinder launch (Dec 3	  2015)
PRL	  116,	  231101

exchanging a laser beam over a few million kilometres.
To achieve the full science objectives of LISA, the ASD of
spurious random accelerations of the TMs must be limited
to S1=2g ðfÞ ≤ 3 fm s−2=

ffiffiffiffiffiffi
Hz

p
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðf=8 mHzÞ4

p
within

the frequency band of the detector, 0.1 mHz ≤ f ≤ 1 Hz.
The f2 relaxation for f ≥ 8 mHz arises because at those
frequencies the noise is expected to be dominated by white
interferometer displacement noise that, when converted to
equivalent acceleration, scales like f2. The requirement
should be given in terms of the differential acceleration,
Δg, between the two test masses. However, as the two
spacecraft are separated by a large distance, force fluctua-
tions around each TM are assumed to be incoherent and
S1=2Δg ¼

ffiffiffi
2

p
S1=2g .

At frequencies below 1 Hz, there is currently no realistic
possibility to reach such a level of free fall in a ground
based laboratory. The main problems are the large accel-
eration of the laboratory relative to a local inertial frame
and low-frequency terrestrial gravitational noise. This
pushes low-frequency GW detectors to space but also
prevents an end-to-end experimental demonstration of
the required free-fall performance in a terrestrial laboratory,
leading to the need for the LISA Pathfinder mission, whose
requirements for the ASD of Δg have been set at S1=2Δg ðfÞ ≤

30 fm s−2=
ffiffiffiffiffiffi
Hz

p
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðf=3 mHzÞ4

p
within the fre-

quency band 1 mHz ≤ f ≤ 30 Hz. Note that for LPF the
cross-over frequency to the f2 branch (3 mHz), corresponds
to the value used in the earliest LISA concept [4], while the
change to 8 mHz results from the latest studies [2]. This
difference has no practical impact on thework presented here.

A. The instrument

The core instrument of LPF [5], consists of two quasi-
cubic test masses, of size ð46.000% 0.005Þ mm and mass
M ¼ ð1.928% 0.001Þ kg, formed from a high-purity gold-
platinum alloy. During science operations, these masses are
in free fall inside a single spacecraft with their centers
separated by a nominal distance of ð376.00% 0.05Þ mm
along a line that we take as the x axis (see Fig. 2 and
Ref. [6]). Each TM is contained within an electrode housing
[7], which serves as an electrostatic shield in addition to a
6 degree-of-freedom sensor and electrostatic force actuator,
with gaps around the mechanically and electrically isolated
TM of 2.9–4 mm on the different axes. Charge accumulated
by the TMs due to cosmic rays is removed by a UV light
discharge system [8].
DC and slowly varying electrostatic forces are applied

with dedicated audio frequency voltages between 60 and

FIG. 1. Gray: ASD of Δg, S1=2Δg ðfÞ, measured for 6.5 days starting 127 days after launch. The ASD is the result of averaging 26
periodograms of 40 000 s each, which results in a relative error (1σ) of 10% in S1=2Δg . The effective spectral resolution, set by the spectral
window, is Δf ≃%50 μHz. The absolute calibration of the measurement is better than 5%. Red: ASD of the same time series after
correction for the centrifugal force (visible at the lowest frequencies). Light blue: ASD after correction for the pickup of spacecraft
motion by the interferometer (IFO), visible in the 20–200 mHz range. Dashed smooth black line: SΔgðfÞ ¼ S0 þ SIFOð2πfÞ4 with

S1=20 ¼ ð5.57% 0.04Þ fm s−2=
ffiffiffiffiffiffi
Hz

p
and S1=2IFO ¼ ð34.8% 0.3Þ fm=

ffiffiffiffiffiffi
Hz

p
. Note that the level of S0 has decreased further in subsequent

measurements, as quoted in the abstract and shown in Fig. 3. Shaded areas: LISA and LISA Pathfinder requirements for Δg. The LISA
single test-mass acceleration requirement [2] has been multiplied by

ffiffiffi
2

p
to be presented here as a differential acceleration.
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2

However, if the frequency changes significantly during
the observation period, then the scaling is

⇢ / M15/8T 5/8
obs

. (9)

Interestingly, the SNR in this regime does not depend
on the termination frequency. Fig. 1 shows that the
mass and the observation time scaling is close to what
we expect when the frequency varies significantly during
the observation. Indeed, a back-of-the-envelope estim-
ation indicates that for a system with the parameters
of GW150914 observed during 5 years f

i

⇡ 0.0158, while
f
i

⇡ 0.0244 when its total mass is halved, and f
i

⇡ 0.0102
when its total mass is doubled.

III. MONTE CARLO

The plots only show the results for the best noise curve
(N2A5) [7].

The data lines show: 4 links, 2 year mission; 6 links,
2 year mission, 4 links, 5 year mission; 6 links, 5 year
mission.

The plots were made by drawing 10000 systems with
random parameters, but fixing: m

1

= 36M
�

(intrinsic);
m

2

= 29M
�

(intrinsic); D
L

= 410 Mpc; z = 0.1.

The plots have any of 3 su�xes: prec, by drawing spin
magnitudes from a flat distibution between 0 and 1, and
random orientations; alig, same with aligned/antialigned
spins; nosp, same with 0 spin magnitudes.

The phasing is 3.5PN TaylorT4.

The mass parameters used are log(m
1

) and log(m
2

).
The M and ⌫ plots were constructed from those para-
meters using linear error propagation.

IV. CONCLUSIONS AND OUTLOOK

We want to generalize to binaries with moderate ec-
centricity [13, 14] as predicted by globular cluster scen-
arios [15, 16].

3
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Figure 1. Cumulative probability distributions of the SNR obtained for di↵erent systems. At the bottom, unmodified SNR,
and at the top, SNR modified by Eq. (9). On the left, all systems considered, and on the right only a selected few of them.
The lines on the right plot correspond to 23.35% of the 5 year systems having SNR lower than 5 and 54.55% lower than 8, and
58.4% of the 2 year systems having SNR lower than 5 and 85.05% lower than 8.

Figure 2. Time measurement precision versus time of merger. Twice the plots for the same price.
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in the text, how our conclusions could be affected by this
choice.

The dimensionless spin magnitude of each BH was uni-
formly drawn from the range [0 � 0.99] (this is the range
where the waveform family we used has been calibrated
against numerical relativity [15, 16]), while the spin tilt an-
gles (i.e. the angle between the spin vector and the orbital
angular momentum) were uniform in the unit sphere. The
luminosity distances were random in comoving volume,
using a ⇤CDM flat cosmology [17]. Since eLISA will be
online after the end of this decade, we worked with a plau-
sible ground-based detector network for the 2020’s, that is:
two LIGOs in the US [2, 18], Virgo in Italy [3], one LIGO
in India [19] and KAGRA in Japan [20]. However, since
we will be comparing parameter estimation accuracies with
and without the eLISA information, our primary result is
largely insensitive to exact details of the future ground-
based detector network. For the masses and network con-
figuration we considered, the distribution of sources pro-
ducing a network signal-to-noise ratio (SNR) of 10 or more
in the ground-based network would peak at a distance of
⇠ 3.5 Gpc (z ' 0.6). However, since sources farther than
z ' 0.4 would not be detectable with eLISA [7], from
the catalog of events generated as explained above we only
kept sources with redshift smaller than 0.4.

200 BBH sources are drawn from the restricted set, and
used in this paper.

We performed parameter estimation with the IMRPhe-
nomPv2 waveform approximant [15, 16] that was used to
estimate the parameters of GW150914. We worked with
the nested sampling flavor of lalinference [21]. The
algorithm we ran is thus identical to what used in [4] with a
main difference: instead of sampling in the luminosity dis-
tance, we sampled directly using the redshift, which was
assigned a prior uniform in comoving volume in the range
z 2 [10�5, 2]. Note that due to the cosmological distances
of these sources, the masses in the detector frame will be
redshifted to higher values (by a factor (1+ z)). Given our
redshift range, redshifted masses in the detector frame take
values in the range [25, 180]M�. We did not marginalize
over calibration errors, implicitly assuming that by the time
eLISA is online the calibration of ground-based detectors
will be better than one percent (current practical limits us-
ing the photon calibrator [22] are ⇠ 0.8% [23]).

The parameters of the signals were estimated first assum-
ing no prior eLISA information. For those runs we used flat
priors in the component masses in the range [10, 250]M�,
flat priors in the spin magnitude in the range [0, 0.99], uni-
form on the sphere for the orbit orientation, sky position,
and spin orientation. These are the “Ground” results.

We then performed a second parameter estimation anal-
ysis (on the same signals) restricting the priors of masses
and sky positions around their true values, assuming that
eLISA will give the correct estimates for those parame-
ters, within its error bars. For each event, we centered the
prior of the chirp mass at the true value, with a range given

by ±0.001% of the true value, the symmetric mass ratio
with a range of ±3%1 and right ascension and declination
with a range of ±3�. Those numbers come from the most
conservative values given in Fig. 3 of [7]. These are the
“eLISA+Ground” results.

Finally, to ensure that our findings would not be affected
by unusual noise fluctuations, we worked with zero-noise
realization [24]. This consists of assuming that the noise is
zero for each frequency bin, while still considering a col-
ored advanced LIGO and Virgo power spectral density to
calculate the likelihood [21]. It has been shown that the re-
sults found with this approach are reliable, with corrections
of the order of 1/⇢3, ⇢ being the signal-to-noise ratio [25].

RESULTS

In this section, we use 90% CI to quote uncertainties.
We will use the word “primary” and the index 1 for the
most massive BH in the binary. We look first at the mea-
surement of the spin magnitudes. In Fig. 1 we show the
uncertainty on the measurement of the primary BH spin
magnitude a1 (circles) and secondary BH spin magnitude
a2 (diamonds) in the “Ground” analysis (X axis) and in the
“eLISA+Ground” analysis (Y axis). The color bar reports
the asymmetric mass ratio (q ⌘ m2/m1  1).

FIG. 1. 90% CI for the measurement of the spin magnitude for
the primary (circles) and secondary BH (diamonds, mostly hid-
den underneath circles in the top right). The X axis reports the
uncertainty only using ground-based detectors, while the Y axis
uses prior eLISA mass and sky position estimates. The color-
bar is the mass ratio (in the range [0,1]). It is clear how a join
“eLISA+Ground” analysis can yield smaller uncertainties.

1 Although we used the symmetric mass ratio ⌘ in lalinference, in what
follows we will report the asymmetric mass ratio q ⌘ m2/m1  1.

Errors on	  primary (circles)	  and	  secondary (diamonds)	  spins

[Vitale,1605.01037]
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tion from [69]. For eLISA, we use sky-averaged, six-link
sensitivity curves, since GW150914-like events will be
considerably more di�cult to resolve with four links [13].
We consider a 5 year mission, and allow multiple op-
tions for the arm length (1, 2, or 5 Gm, i.e. A1, A2,
A5) and the low frequency noise (N2 for the expected
LISA Pathfinder performance, N1 for a noise ten times
worse) [15]. We assume that the observation is simulta-
neously done by two instruments (either the two indepen-
dent eLISA interferometers, or the aLIGO Hanford and
Livingston sites). To combine aLIGO and eLISA results,
we add the Fisher matrices and then invert the sum to
obtain the variance-covariance matrix [70, 71].

We explore the projected bounds on B with sev-
eral BH binaries. For GW150914-like systems, we con-
sider total masses m = (50, 80, 100)M� (as well as
m = 65M� for the actual GW150914 event), a mass
ratio q ⌘ m

1

/m
2

= 0.8, dimensionless spin parameters
(�

1

,�
2

) = (0.4, 0.3), and a luminosity distance dL = 400
Mpc (i.e. redshift z ⇠ 0.085). For massive BH bi-
naries, we consider m = (104, 105, 106)M�, with large
(�

1

,�
2

) = (0.9, 0.8) spins, mass ratios q = (0.3, 0.8),
and dL = (16, 48) Gpc (i.e. z ⇠ 2 and 5). We also
consider extreme/intermediate mass-ratio inspirals (EM-
RIs/IMRIs), for which we consider individual masses
(10, 105)M�, (10, 104)M�, (102, 105)M�, (103, 105)M�,
dL = (1, 5) Gpc [z ⇠ (0.2, 0.8)], and spins (�

1

,�
2

) =
(0.5, 0.8) in all cases.

Figure 1 summarizes our 1� bounds on B. eLISA ob-
servations of GW150914-like systems lead to constraints
typically five orders of magnitude stronger than the cur-
rent A0620-00 constraints, and six orders of magnitude
stronger than current aLIGO constraints. This is because
when these binaries produce GWs in the eLISA band,
they are widely separated and thus they emit dipole ra-
diation abundantly. For example, 5 years prior to merger
(while in the eLISA band), the GW150914 binary had an
orbital velocity of 0.03 c, which increased to 0.22 c before
entering the aLIGO band at ⇠ 10 Hz.

The combined aLIGO-eLISA observations lead to con-
straints that are a factor of 2–3 more stringent than
eLISA observations alone. These combined constraints
are roughly three orders of magnitude worse than the ap-
proximate calculation presented earlier because the lat-
ter does not account for correlations between parameters.
We have indeed verified that we recover that bound if we
assume that all parameters except � (or equivalently B)
are known exactly, i.e. if we assume that the variance
on � is simply given by the inverse of the corresponding
diagonal entry of the Fisher matrix.

eLISA observations of massive BH binaries and EM-
RIs/IMRIs would also be able to place constraints on
BH dipole radiation, although these are typically weaker.
How strong these bounds are depends on the orbital sep-
aration (or relative velocity) of these binaries when they
emit GWs in the eLISA band. For example, eLISA will
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FIG. 1: (Color Online) Projected 1� constraints on the BH
dipole flux parameter B from various sources – GW150914-
like BH binaries (stars), massive BH binaries (filled cir-
cles) and EMRIs/IMRIs (filled triangles) – as a function
of the instrument – aLIGO at the time of the GW150914
event (Curr. aLIGO), aLIGO at design sensitivity (Desgn
aLIGO), various six-link eLISA configurations (NxAx) with
target/pessimistic low-frequency noise (N2/N1) and 1 Gm/2
Gm arms (A1/A2), a Classic LISA design with six links,
5-Gm arms and low-frequency noise at the target level, as
well as joint observations by aLIGO and eLISA/Classic LISA
(C-NxAx/C-LISA). For comparison, we also include the cur-
rent constraint on vacuum dipole radiation from LMXB
A0620-00 [61]. The combined aLIGO-eLISA observation
of GW150914-like sources leads to the most stringent con-
straints, which are 5 orders of magnitude stronger than cur-
rent bounds.

be sensitive only to the very late inspiral and merger-
ringdown of very massive BH binaries, which is why these
lead to weaker constraints in Fig. 1.

One may wonder whether the projected constraints
discussed above are robust, given that gravity modifica-
tions inducing dipole emission, if present, will typically
change the GW model not only at -1PN order in the
waveform phase, but also at higher PN orders. However,
one can show explicitly [62], at least in FJBD theory, that
these higher order corrections only a↵ect a Fisher anal-
ysis like ours by at most 10%. The addition of a large
number of terms in the GW phase at multiple PN orders
is not only unnecessary, but actually counterproductive
as it dilutes the ability to extract any information from
the signal (as first pointed out in [72, 73] and recently
verified in [67]).

Finally, our constraints are relevant for theories where
the gravity modifications are not completely screened
on the scale of BH binaries. Indeed, to our knowledge
there is no proposed screening mechanism that can com-
pletely screen gravity modifications at small scales in
dynamical situations such as those of interest here (see
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gravitating bodies or in regimes of weak gravitational
fields (like on Earth or in the solar system), modifica-
tions to the dynamics are excluded to high confidence
by particle-physics and gravitational experiments [20].
However, if the additional fields do not couple to mat-
ter at tree level, then their e↵ect on the motion will be
suppressed, i.e the “weak” equivalence principle – the
universality of free fall in weak-gravity regimes – will be
satisfied, and these experimental tests will be passed.

The motion of strongly-gravitating bodies, such as neu-
tron stars (NSs) and BHs, can more easily deviate from
the GR expectation in modified gravity theories. In-
deed, an e↵ective coupling between the extra fields and
matter, even if suppressed at tree level, typically re-
appears at higher perturbative orders. This is because
the extra fields generally couple non-minimally to the
metric, which in turn is coupled to matter via gravity.
Therefore, when gravity is strong, the non-minimal cou-
pling causes the emergence of (e↵ective) fifth forces and
energy-momentum exchanges between matter and the ex-
tra fields, thus leading to deviations from the universality
of free fall [21, 22]. These are referred to as violations of
the “strong” equivalence principle, or the “Nördtvedt ef-
fect” (especially when referring to accelerations).

A modification of the motion of strongly-gravitating
bodies will leave an imprint in the GWs these bodies
emit. In GR, GW emission is predominantly quadrupo-
lar, as monopole and dipole emission are forbidden by
the conservation of the matter stress-energy tensor. In
modified gravity, however, the matter stress-energy ten-
sor is generally not conserved due to the Nördtvedt ef-
fect, thus allowing monopole and dipole emission [20].
Dipole radiation, in particular, is the dominant e↵ect for
quasi-circular binary systems, although its actual pres-
ence and magnitude generally depend on the nature of
the binary components and the modified theory of grav-
ity in question. In addition to dipole radiation, conserva-
tive modifications to the dynamics (e.g. to the binary’s
binding energy/Hamiltonian) may also be present, but
they are typically subdominant as they enter at higher
post-Newtonian (PN) order1 [23–25].

Let us sketch how dipole radiation comes about by con-
sidering one of the simplest GR extensions. In “scalar-
tensor” (ST) theories of the Fierz, Jordan, Brans and
Dicke (FJBD) type [26–28], the gravitational interaction
is mediated by the usual spin-2 metric field and by a
gravitational scalar field. The latter has a standard ki-
netic term in the action (up to a field redefinition), is
minimally coupled to matter, and directly coupled to the

1 In the PN approximation, the field equations are solved pertur-
batively in the ratio (v/c), v being the binary relative velocity.
Terms suppressed by (v/c)2n relative to the leading order are
said to be of nPN order.

Ricci scalar. Because of the standard kinetic term, the
scalar obeys the Klein-Gordon equation, with a source
(due to the coupling to the Ricci scalar in the action)
that depends on the matter stress-energy. Therefore, the
scalar is not excited in globally vacuum spacetimes, and
can only be non-constant because of non-trivial boundary
or initial conditions (e.g. if the scalar field is not initially
uniform, in which case it undergoes a transient evolu-
tion before settling to a constant [29], or if cosmological
or non-asymptotically-flat boundary conditions are im-
posed [30, 31]). Therefore, BH spacetimes (isolated or
binary) generally do not excite a scalar field (i.e. are said
to have “no hair”) and do not emit dipole radiation in
these theories [32, 33].
Nevertheless, FJBD-like ST theories predict that

dipole emission should be present in binaries involving
at least one NS. This has been historically very impor-
tant, because binary pulsar observations constrain pos-
sible deviations of the orbital period decay away from
the GR prediction to high accuracy. For example, the
double binary pulsar PSR J0737-3039 [34, 35] constrains
� ⌘ |(Ṗ /P )

nonGR

� (Ṗ /P )
GR

|/(Ṗ /P )
GR

. 10�2 [36–
38], while the binary pulsar J1141-6545 [39] constrains
� . 6 ⇥ 10�4. These observations place very stringent
constraints on several gravitational theories, including
FJBD-like ST ones.
One can easily derive a precise bound on gravita-

tional dipole emission with binary pulsar observations by
parametrizing a dipole flux correction to the GW power
as

Ė
GW

= Ė
GR

"
1 +B

✓
Gm

r
12

c2

◆�1

#
(1)

where Ė
GR

is the GR GW flux (given at leading or-
der by the quadrupole formula), m and r

12

are the bi-
nary’s total mass and orbital separation, and B is a
theory-dependent parameter that regulates the strength
of the dipole term (e.g. in FJBD-like ST theories, B =
5(�↵)2/96, where�↵ is the di↵erence between the scalar
charges of the two bodies [33, 40]). Dipole emission is
enhanced (relative to quadrupolar emission) by a fac-
tor (Gm/r

12

c2)�1, i.e. it is a -1PN e↵ect that domi-
nates over the GR prediction at large separations (or low
frequencies). Since Ṗ /P = �(3/2)Ė

GW

/|E
b

|, E
b

being
the Newtonian binding energy of the binary, one obtains
� = |Ė

GW

/Ė
GR

� 1| = |B|(Gm/r
12

c2)�1 . 10�2. This
leads to the approximate bound |B| . 6⇥10�8 with PSR
0737-3039 [38] and |B| . 2⇥10�9 with PSR J1141–6545.
Similar bounds follow from other binary pulsar observa-
tions.

These bounds place stringent constraints on several
theories that predict dipole GW emission in the inspi-
ral of binaries involving at least one NS, e.g. numer-
ous FJBD-like ST theories (especially those that pre-
dict spontaneous scalarization for isolated NSs [40–43]),
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Figure 4. Expected number of all the detected binary black holes (left) and merging binary black holes (right) as functions of the
observation period of eLISA. Note the di↵erent scale of the vertical axes.
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Figure 5. Comparison of the frequency distribution of the ex-
pected number of detections obtained by the exact expression,
Eq. (14) (solid curve), and that by the monochromatic approxi-
mation, Eq. (22) (dashed curve). The results for NGO (black) and
N2A5 (red) configurations are shown assuming three-year obser-
vations. The vertical dotted line marks fmerge(3 yr) = 19.2mHz.

where p(M) is the probability distribution of the chirp mass.
For example, if the realistic typical chirp mass would be
⇠ 9M� corresponding to a 10M�–10M� binary, the number
of detections is smaller by a factor of ⇠ 40–50 than the
current estimate. This dependence should be compared with
M5/2 expected for ground-based detectors [see Eqs. (6) and
(7)], which observe chirping signals.

The distribution scales as / T 3/2 because of the rela-
tion ⇢ / T 1/2. This means that a longer operation of eLISA
will detect more binary black holes than the increase lin-
ear in time di↵erently from compact binary coalescences for
ground-based detectors. The longer operation will further
increase the detections of non-merging binary black holes
by removing more confusion noise caused by Galactic com-
pact binaries, and thus T 3/2 is conservative. While this e↵ect
will not be relevant to merging binary black holes at high
frequency, their detections should also increase even faster
than T 3/2, because the longer operation of eLISA allows bi-
naries at lower frequency to merge within the observation
period.

Figure 5 compares dN/d ln f obtained by the exact in-
tegration, Eq. (14), and that by the monochromatic approx-
imation, Eq. (22), for T = 3yr. The agreement is quite good
at frequency lower than fmerge(T ), particularly for N2A5.

Figure 6. Tangential line with the slope �2/9 to the square root
of S(f) with the slope �2/9. The black and red curves are for
NGO and N2A5, respectively.

The deviation is only by a factor of less than 2 at fmerge(T )
even for NGO. This clearly shows that the monochromatic
approximation works quite well to estimate the number of
non-merging binary black holes. By contrast, the monochro-
matic approximation significantly overestimates the number
of merging binary black holes at high frequency. The break-
down of this approximation at f & fmerge(T ) is inevitable,
because the binary evolution necessarily becomes important.
Still, taking the fact that the detections is dominated by
non-merging binaries, the monochromatic approximation is
useful to derive semiquantitative dependence of characteris-
tic quantities on relevant parameters and to evaluate detec-
tor performance by a concise calculation.

The frequency at which the distribution, dN/d ln f ,
peaks will dominate the detections, and it can be evaluated
graphically by drawing a tangential line with an appropri-
ate slope to the noise spectral density. Specifically, Eq. (22)
shows that the peak frequency is obtained as a contact point
of a tangential line with the slope �2/9, i.e., / f�2/9, to the
square root of the noise spectral density, S(f)1/2, as shown
in Fig. 6. The same can be done by taking the minimum of
S(f)f4/9.
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the detectable volume averaged over the inclination angle is
calculated as

V (fi, T ) =
4⇡
3

⇥ 0.822
A3

⇢3thr
I7(fi, T )

3/2, (12)

and the e↵ective range is given by

De↵(fi, T ) = 0.937
A

⇢thr
I7(fi, T )

1/2. (13)

Hereafter, we denote the initial frequency simply by f an-
ticipating no confusion would arise.

The frequency distribution of the expected number of
detections for binary black holes can be calculated as

dN

d ln f
= V (f, T )

dn

d ln f
, (14)

where dn/d ln f is the number-density distribution of the
binaries. For a collection of identical binary black holes, the
distribution of the number density n in each logarithmic
frequency interval should be proportional to the time that
binaries spend in the interval. Here, we specifically consider
the collection of binary black holes similar to GW150914.
Using the comoving merger rate R = dn/dt, the distribution
is written as

dn

d ln f
=

f

ḟ
R =

5c5R

96⇡8/3G5/3M5/3f8/3
(15)

= 4.57⇥ 10�6 Mpc�3

⇥
✓

f

10mHz

◆�8/3 ✓ M
28M�

◆�5/3 ✓
R

100Gpc�3 yr�1

◆
.

(16)

The distribution of the expected number of detections,
dN/d ln f , is obtained by multiplying Eqs. (12) and (15),
where it is proportional to R/⇢3thr as expected. The distance
Dnear to the nearest and thus loudest binary black holes in
each logarithmic frequency interval can be guessed from this
number-density distribution via the condition

4⇡
3
D3

near(f)
dn

d ln f
= 1, (17)

and it is found to be

Dnear(f) =
32/32⇡5/9G5/9M5/9f8/9

51/3c5/3R1/3
(18)

= 37.4Mpc

⇥
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f

10mHz

◆8/9 ✓ M
28M�

◆5/9 ✓
R

100Gpc�3 yr�1

◆�1/3

.

(19)

To indicate the relevant distance scale of the problem,
we show the e↵ective range De↵(f) for two representative
noise curve models of eLISA (Amaro-Seoane et al. 2012;
Klein et al. 2016) and the distance to the nearest binary
Dnear(f) in Fig. 1. This figure shows that the relevant range
is local with . 350Mpc. The expected number of detec-
tions becomes lower than unity for the frequency range
where De↵ . Dnear, and thus the actual number will fluc-
tuate significantly. This fluctuation will especially be rele-
vant for the detection of merging binary black holes satis-
fying f > fmerge(T ) by low-sensitivity configurations such
as NGO (Amaro-Seoane et al. 2012), with which De↵/Dnear

never exceeds 2 irrespective of the frequency.

Figure 1. E↵ective range De↵ for three-year observations of
eLISA and the distance Dnear to the nearest binary black holes
similar to GW150914. The curves for De↵ labeled by NGO and
N2A5 are calculated with the noise curve of Amaro-Seoane et al.
(2012) and that of Klein et al. (2016), respectively. Galactic bi-
nary white dwarfs are taken into account as the foreground for
the latter according to Klein et al. (2016). The vertical dotted
line marks fmerge(3 yr) = 19.2mHz.
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Figure 2. Frequency distribution of the expected number of de-
tections for binary black holes similar to GW150914 in each log-
arithmic frequency interval for three-year observations of eLISA.
The curve labeled by NGO is calculated with the noise curve of
Amaro-Seoane et al. (2012), and the others are with those of Klein
et al. (2016). Galactic binary white dwarfs are taken into account
as the foreground for N2 configurations according to Klein et al.
(2016). The vertical dotted line marks fmerge(3 yr) = 19.2mHz.

2.2 frequency distribution of the expected
number of detections

Figure 2 shows the distribution, dN/d ln f [Eq. (14)], cal-
culated with various noise curve models of eLISA (Amaro-
Seoane et al. 2012; Klein et al. 2016). For models of Klein
et al. (2016), N2 has a weaker acceleration noise than N1,
and the sensitivity is improved primarily at low frequency.
A1, A2, and A5 correspond to the arm length of 1⇥ 106 km,
2⇥ 106 km, and 5⇥ 106 km, respectively, and the long arm
length improves the sensitivity at intermediate frequency.

This figure shows that the noise curve has a critical im-
pact on the number of detections and also that the majority
of the detected binaries will not merge within the observa-
tion period in any case. The number of merging binary black
holes satisfying f > fmerge(T ) is not a↵ected significantly by
the sensitivity at low frequency, as found from the compar-
isons between N1 and N2 configurations. This is expected,
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To indicate the relevant distance scale of the problem,
we show the e↵ective range De↵(f) for two representative
noise curve models of eLISA (Amaro-Seoane et al. 2012;
Klein et al. 2016) and the distance to the nearest binary
Dnear(f) in Fig. 1. This figure shows that the relevant range
is local with . 350Mpc. The expected number of detec-
tions becomes lower than unity for the frequency range
where De↵ . Dnear, and thus the actual number will fluc-
tuate significantly. This fluctuation will especially be rele-
vant for the detection of merging binary black holes satis-
fying f > fmerge(T ) by low-sensitivity configurations such
as NGO (Amaro-Seoane et al. 2012), with which De↵/Dnear

never exceeds 2 irrespective of the frequency.

Figure 1. E↵ective range De↵ for three-year observations of
eLISA and the distance Dnear to the nearest binary black holes
similar to GW150914. The curves for De↵ labeled by NGO and
N2A5 are calculated with the noise curve of Amaro-Seoane et al.
(2012) and that of Klein et al. (2016), respectively. Galactic bi-
nary white dwarfs are taken into account as the foreground for
the latter according to Klein et al. (2016). The vertical dotted
line marks fmerge(3 yr) = 19.2mHz.

Figure 2. Frequency distribution of the expected number of de-
tections for binary black holes similar to GW150914 in each log-
arithmic frequency interval for three-year observations of eLISA.
The curve labeled by NGO is calculated with the noise curve of
Amaro-Seoane et al. (2012), and the others are with those of Klein
et al. (2016). Galactic binary white dwarfs are taken into account
as the foreground for N2 configurations according to Klein et al.
(2016). The vertical dotted line marks fmerge(3 yr) = 19.2mHz.

2.2 frequency distribution of the expected
number of detections

Figure 2 shows the distribution, dN/d ln f [Eq. (14)], cal-
culated with various noise curve models of eLISA (Amaro-
Seoane et al. 2012; Klein et al. 2016). For models of Klein
et al. (2016), N2 has a weaker acceleration noise than N1,
and the sensitivity is improved primarily at low frequency.
A1, A2, and A5 correspond to the arm length of 1⇥ 106 km,
2⇥ 106 km, and 5⇥ 106 km, respectively, and the long arm
length improves the sensitivity at intermediate frequency.

This figure shows that the noise curve has a critical im-
pact on the number of detections and also that the majority
of the detected binaries will not merge within the observa-
tion period in any case. The number of merging binary black
holes satisfying f > fmerge(T ) is not a↵ected significantly by
the sensitivity at low frequency, as found from the compar-
isons between N1 and N2 configurations. This is expected,
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I. INTRODUCTION

Massive black hole (BH) binaries: LIGO discovery
paper [1] and LIGO PE paper [2]. GW150914 has
the following parameters: luminosity distance of D

L

=
410+160

�180

Mpc, corresponding to a redshift z = 0.09+0.03
�0.04.

In the source frame, the initial black hole masses are
(m

1

,m
2

) = (36+5

�4

, 29+4

�4

) M
�

; the final black hole mass

is 62+4

�4

M
�

, with 3.0+0.5
�0.5 M

�

radiated in gravitational
waves. If the LVT151012 trigger is indeed a binary BH
system, the best-fit source-frame component masses are
(m

1

,m
2

) = (23+18

�5

, 13+4

�3

)M
�

.

Rate paper [3] and astrophysical implications [4].

We extend [5]; see also [6]. We use the parameter es-
timation code of [7], vetted against the codes in [8, 9]
(and Atsushi’s code).

Note that binaries that span both bands have import-
ant implications for GR tests [10], as pointed out e.g.
in [11, 12].

Some ideas:

1) We should add an estimate of the time it takes for
massive BH binaries to go from (say) the bucket of
the LISA band to merger; I have in mind something
similar to the caption in Fig. 2 of [6], but for various
masses/mass ratios/aligned spins to bracket un-
certainties. We could make a figure of the “time
to merger” for selected systems: say GW150914,
LVT151012 and di↵erent parameters.

2) [EB: Antoine has been running with di↵erent high-

sensitivity curves but the histograms are not in here

yet.]

3) [EB: We must make histograms based on the two

extreme (log-flat and Salpeter) models of [3].]
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II. SNR SCALING

To estimate how the signal-to-noise ratio (SNR) scales
with the total mass and with the observation time, we
approximate the noise spectral density by its behaviour
for high frequencies, we approximate the signal with the
restricted waveform approximation at Newtonian order,
and we neglect the time variation of eLISA’s response
function. The SNR ⇢ is given by

⇢2 =

Z ff

fi

|h̃(f)|2

Sn(f)
df, (1)

with

Sn(f) / f2, (2)

h̃(f) / M5/6f�7/6

D
L

ei (f), (3)

f
i

= f [t(f
f

)� T
obs

] (4)

= f
f

 
C

C +M5/3T
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f8/3
f

!
3/8

. (5)

where in the last line we used the quadrupole formula
t(f) = tc �CM�5/3f�8/3, with C = 5/(256⇡8/3), where
the chirp mass M = (m

1

m
2

)3/5M�1/5.
We thus get

⇢ /
M5/6f�5/3

f
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f8/3
f

C

!
5/4

� 1. (6)

The SNR is inversely proportional to the luminosity
distanceD

L

of the source. Depending on the values of the
total mass and of the observation time, the dependence
of the SNR on these parameters will change. If the source
appears nearly monochromatic, i.e. if f

i

is close to f
f

, or

T
obs

ḟ

f

�����
f=ff

⌧ 1 () M5/3T
obs

f8/3
f

⌧ 8C

3
, (7)

then the scaling is

⇢ / M5/3T 1/2
obs

f�1/3
f

. (8)



after switching to the tortoise coordinate (14) and introduc-
ing! ¼ ðr2 þ a2Þ1=2R the radial Eq. (12) takes the form of
the Schrödinger equation

d2!

dr2%
& V! ¼ 0 (20)

with the potential

V ¼ &!2 þ 4rgram!& a2m2

ðr2 þ a2Þ2

þ "

r2 þ a2

!
!2

a þ
lðlþ 1Þ þ k2a2

r2 þ a2

þ 3r2 & 4rgrþ a2

ðr2 þ a2Þ2 & 3"r2

ðr2 þ a2Þ3
"
: (21)

We include the ð&!2Þ term in the definition of the poten-
tial, because even if wewere to separate it, there would be a
residual dependence on!. We present the qualitative shape
of the potential V for a typical choice of parameters in
Fig. 7. One can clearly see the potential well where the
bound Keplerian orbits are localized and a barrier separat-
ing this region from the near-horizon region where super-
radiant amplification takes place.

Consequently, the axion wave function at the horizon
r ¼ rþ (corresponding to r% ¼ &1) is suppressed relative
to the wave function in the vicinity of the Keplerian orbit
by a tunneling exponent,

jRðrþÞj ’ jRðrcÞje&I;

where the tunneling integral I is

I ¼
Z r%ðr2Þ

r%ðr1Þ
dr%

ffiffiffiffi
V

p
¼

Z r2

r1

dr

ffiffiffiffi
V

p
ðr2 þ a2Þ
"

; (22)

with r1;2 being the boundaries of the classically forbidden
region. We will only follow the leading exponential depen-
dence on e&I and do not aim at calculating the normaliza-
tion prefactor in front of the exponent.

To relate the tunneling exponent with the rate of super-
radiance instability let us consider again the energy flow
Eq. (6). Integrating it over the horizon we obtain

dE
dt

¼ !ðmwþ &!Þ
Z
horizon

jYð"ÞRðrþÞj2; (23)

where E is the energy in the axion cloud. The energy is
maximum in the Keplerian region, so that in the limit
where we only keep track of the dependence on the ex-
ponent e&I we can write

E / jRðrcÞj2 ’ e2IjRðrþÞj2;
and, consequently, to rewrite (23) as

dE
dt

¼ const ' ðmwþ &!Þe&2IE: (24)

In other words, the WKB approximation for the super-
radiance rate gives1

# ¼ #ðmwþ &!Þe&2I; (25)

where the normalization prefactor is determined mainly by
the spread of the wave function in the classically allowed
region. We will limit ourself by calculating the exponential
part #. We leave the technical details for the Appendix, and
present only the final result here. Namely, the final answer
for the tunneling integral in the extremal Kerr geometry
takes the form

I ¼ $
!
2%&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2%ð%& 1Þ

p "
; (26)

which translates in the following superradiant rate,

#WKB ( 10&7r&1
g e&2$%ð2&

ffiffi
2

p
Þ ( 10&7r&1

g e&3:7%; (27)

where we took the large % limit in (26) and chose the
prefactor to match the low % results of Sec. II B (this value
also agrees with that of [19,32]). As we already said, the
exponent in (27) is larger than that in [19] by a factor of two.
As explained in the Appendix, the rate (27) provides an
upper envelope for superradiance rates at different l in the
large % limit. We have presented (27) by a dotted line in
Fig. 5; it agrees reasonably well with the previous%=l ) 1
results.

III. DYNAMICS OF SUPERRADIANCE

Let us turn now to discussing the dynamical consequen-
ces of the superradiant instability. One important property
of the rates calculated in Sec. II is that the time scale for the
development of the instability is quite slow compared to
the natural dynamical scale rg close to the black hole
horizon, #&1

sr > 107rg. Consequently, in many cases non-
linear effects, both gravitational, and due to axion self-
interactions, become important in the regime where the
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Exponential
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r * Black Hole Horizon

“Mirror”
at r~1/µ

FIG. 7 (color online). The shape of the radial Schroedinger
potential for the eigenvalue problem in the rotating black hole
background. Superradiant modes are localized in a potential well
region created by the mass ‘‘mirror’’ from the spatial infinity on
the right, and by the centrifugal barrier from the ergo-region and
horizon on the left. 1Note, that at this stage we still agree with [19].
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Black	  hole dynamics:	  wave scattering

Quasinormal modes:
q Ingoing	  waves	  at	  the	  horizon,

outgoing	  waves	  at	  infinity
q Discrete	  spectrum	  of	  damped	  

exponentials	  (“ringdown”)
[EB++,	  0905.2975]

Massive	  scalar	  field:
q Superradiance: black	  hole	  bomb

when 0	  <	  w <	  mWH
q Hydrogen-‐like,	  

unstable	  bound	  states	  
[Detweiler,	  Zouros+Eardley…]

[Arvanitaki+Dubovsky,	  1004.3558]



Ringdown:	  black hole spectroscopy

wlmn=wR+iwI=2pf+i/t
f =	  0.012	  (106Msun)/M	  Hz
t =	  55	  M/(106Msun)	  s



Spectroscopy of	  rotating (Kerr)	  black holes
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Considering that, for parameters similar to those inferred for
GW150914, our waveform models have much higher FFs
against numerical GR waveforms, we conclude that the noise-
weighted correlation between the observed strain signal and
the true GR waveform is � 96%. This statement can be read
as implying that the GR prediction for GW150914 is veri-
fied to better than 4%, in a precise sense related to noise-
weighted signal correlation; and conversely, that e↵ects due to
GR-violations in GW150914 are limited to less than 4% (for
e↵ects that cannot be reabsorbed in a redefinition of physical
parameters).

Inspiral, merger and ringdown consistency test. We now
perform a test to show that the inspiral and merger/ringdown
parts of GW150914 do not deviate from the predictions of a
binary black-hole coalescence in GR. One way to do that is
to compare the estimates of the mass and spin of the remnant
obtained from di↵erent parts of the waveform, using the rela-
tions between the binary’s components and final masses and
spins provided by NR [57].

We first explore the posterior distributions of the bi-
nary’s component masses and spins from the “inspiral” (low-
frequency) part of the observed signal, using the nested sam-
pling algorithm from the LALInference software library [50],
and then use formulae obtained from NR simulations to get
posterior distributions of the remnant’s mass and spin. The
inspiral part of the signal is defined as follows. We fix the
frequency at which the inspiral phase ends to f end insp

GW = 132
Hz, close to the MAP waveform’s merger frequency [3] (see
Figs. 2 and 5 below), and restrict the waveform model in the
frequency domain from 20 Hz to f end insp

GW . Next, we estimate
posterior distributions on the mass and spin of the final com-
pact object from the “post-inspiral” (high-frequency) signal
that is dominated by the contribution from merger and ring-
down stages (i.e., from the waveform model that extends from
f end insp
GW up to 1024 Hz), again using formulae obtained from

NR simulations. We notice that the expectation value of the
SNRdet from the MAP waveform whose support is only from
20 Hz to 132 Hz is ⇠ 19.5, while when the support is from
132 Hz to 1024 Hz it is ⇠ 16. Finally, we compare these
two estimates of the final Mf and dimensionless spin a f , and
compare them also against the estimate performed using the
full inspiral–merger–ringdown waveform GW150914. In all
cases, we average the posteriors obtained with the EOBNR
and IMRPhenom waveform models, following the procedure
outlined in Ref. [3]. Technical details about the implementa-
tion of this test can be found in Ref. [58].

This test is similar in spirit to the �2 GW-search veto [2, 59]
that penalizes event candidates if their (noise-weighted) resid-
ual with respect to theoretical templates is too uneven across
frequency segments—a warning that some parts of the wave-
form are fit much worse than others, and thus the candidates
may be due to instrument glitches that are very loud, but
do not resemble binary-inspiral signals. However, �2 tests
are performed by comparing the data with a single theoret-
ical waveform, while in this case we allow the inspiral and
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FIG. 3. Top panel: 90% confidence regions on the joint posterior
distributions for the mass Mf and dimensionless spin af of the final
compact object predicted from the inspiral (dark violet, dashed) and
measured from the post-inspiral (violet, dot-dashed), as well as the
result from a full inspiral-merger-ringdown (IMR) analysis (black).
Bottom panel: Posterior distributions for the parameters �Mf /Mf
and �af /af that describe the fractional di↵erence in the estimates
of the final mass and spin from inspiral and post-inspiral parts. The
contour shows the 90% confidence region. The plus symbol indicates
the expected value (0, 0) in GR.

merger/ringdown partial waveforms to select di↵erent physi-
cal parameters. Thus, this test should be sensitive to subtler
deviations from the predictions of GR.

In Fig. 2 we show the EOBNR MAP waveform [3] with its
instantaneous GW frequency; the shaded areas correspond to
the 90% credible regions. The vertical line marks f end insp

GW =
132 Hz; see also Fig. 5 below, where we plot the MAP
frequency-domain amplitude and indicate the inspiral, inter-
mediate, and merger-ringdown regimes. In Fig. 3 we sum-
marize our findings. The top panel of Fig. 3 shows the poste-
rior distributions of Mf and a f estimated from the inspiral and
post-inspiral parts, as well as from the entire inspiral–merger–

10

the data are consistent with the presence of the least-damped
QNM as predicted by GR, occurring between 10–20M after
merger [62–64]. In the future, we will extend the analysis to
two damped sinusoids and explore the possibility of indepen-
dently extracting the final black hole’s mass and spin. A test
of the general relativistic no-hair theorem [65, 66] requires
the identification of at least two QNM frequencies in the ring-
down waveform [67–69]. Moreover, the independent determi-
nation of the remnant mass and spin will allow us to test the
second law of black-hole dynamics [70, 71].

Constraining parameterized deviations from general-
relativistic inspiral–merger–ringdown waveforms. Because
GW150914 was emitted by a binary black hole in its final
phase of rapid orbital evolution, its gravitational phasing (or
phase evolution) encodes nonlinear conservative and dissipa-
tive e↵ects that are not observable in binary pulsars, whose
orbital period changes at an approximately constant rate. 4

Those e↵ects include tails of radiation due to backscattering of
GWs by the curved background around the coalescing black
holes [72], non-linear tails (i.e., tails of tails) [73], couplings
between black-hole spins and the binary’s orbital angular mo-
mentum, interactions between the spins of the two bodies [74–
76], and excitations of QNMs [27–29] as the remnant black
hole settles in the stationary configuration.

Whether all these subtle e↵ects can actually be identified
in GW150914 and tested against GR predictions depends of
course on their strength with respect to instrument noise and
on whether the available waveform models are parameterized
in terms of those physical e↵ects. GW150914 is moderately
loud, with SNR ⇠ 24, certainly much smaller than what can be
achieved in binary-pulsar observations. Our ability to analyze
the fine structure of the GW150914 waveform is correspond-
ingly limited. Our approach is to adopt a parameterized an-
alytical family of inspiral–merger–ringdown waveforms, then
treat the waveform coe�cients as free variables that can be es-
timated (either individually or in groups) from the GW150914
data [77–82]. We can then verify that the posterior probability
distributions for the coe�cients include their GR values.

The simplest and fastest parameterized waveform model
that is currently available [39] can be used to bound phys-
ical e↵ects only for the coe�cients that enter the early in-
spiral phase, because for the late inspiral, merger and ring-
down phases it uses phenomenological coe�cients fitted to
NR waveforms. Louder GW events, to be collected as de-
tector sensitivity improves, and more sophisticated parame-
terized waveform models, will allow us to do much more
stringent and physical tests targeted at specific relativistic
e↵ects. We work within a subset of the TIGER frame-
work [82, 83] and perform a null-hypothesis test by com-
paring GW150914 with a generalized, analytical inspiral–
merger–ringdown waveform model (henceforth, gIMR) that

4 Current binary-pulsar observations do constrain conservative dynamics at
1PN order and they partially constrain spin–orbit e↵ects at 1.5PN order
through geodetic spin precession [12].
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inspiral intermediate merger
ringdown

FIG. 5. Frequency regions of the parameterized waveform model
as defined in the text and in Ref. [39]. The plot shows the absolute
value of the frequency-domain amplitude of the most-probable wave-
form from GW150914 [3]. The inspiral region (cyan) from 20 Hz to
⇠55 Hz corresponds to the early and late inspiral regimes. The in-
termediate region (red) goes from ⇠ 55 Hz to ⇠ 130 Hz. Finally, the
merger-ringdown region (orange) goes from ⇠ 130 Hz to the end of
the waveform.

includes parameterized deformations with respect to GR. In
this framework, deviations from GR are modeled as frac-
tional changes {� p̂i} in any of the parameters {pi} that param-
eterize the GW phase expression in the baseline waveform
model. Similarly to Refs. [82, 83], we only consider devia-
tions from GR in the GW phase, while we leave the GW am-
plitude unperturbed. Indeed, at the SNR of GW150914 (i.e.,
SNR ⇠ 24), we expect to have much higher sensitivity to the
GW phase rather than to its amplitude. Also, amplitude devi-
ations could be reabsorbed in the calibration error model used
to analyse GW150914 [3].

We construct gIMR starting from the frequency-domain
IMRPhenom waveform model. The dynamical stages that
characterize the coalescence process can be represented in the
frequency-domain by plotting the absolute value of the wave-
form’s amplitude. We review those stages in Fig. 5 to guide
the reader towards the interpretation of the results that are
summarized in Table I and Figs. 6 and 7. We refer to the early-
inspiral stage as the PN part of the GW phase. This stage of
the phase is known analytically up to (v/c)7 and it is parame-
terized in terms of the PN coe�cients ' j, j = 0, . . . , 7 and the
logarithmic terms ' jl, j = 5, 6. The late-inspiral stage, pa-
rameterized in terms of � j, j = 1, . . . , 4, is defined as the phe-
nomenological extension of the PN series to (v/c)11. The early
and late inspiral stages are denoted simply as inspiral both in
Ref. [39] and in Fig. 5. The intermediate stage that models
the transition between the inspiral and the merger-ringdown
phase is parameterized in terms of the phenomenological co-
e�cients � j, j = 1, 2, 3. Finally, the merger–ringdown phase
is parameterized in terms of the phenomenological coe�-

The	  LIGO	  GR	  test	  paper:	  signal consistent with	  GR	  merger

1)	   LALInference:	  “maximum	  a	  posteriori”	  waveform
BayesWave:	  residual	  after	  subtraction	  is	  consistent	  with	  noise

2) Inspiral and	  post-‐inspiral predict	  the	  same	  (Mf,	  af)

3) Data	  post-‐peak	  consistent	  with	  fundamental	  QNM	  for	  the	  given	  (Mf,	  af):
f=251Hz,	  t=4ms

[LVC,	  1602.03841]



4) gIMR (“generalized”	  IMR):	  measure	  PN	  and	  parametrizedwaveform	  
coefficient	  (related	  to	  ppE)

5) Graviton	  Compton	  wavelength
lg>1013km	  (mg<1.2x10-‐22)

6) No	  polarization	  information

The	  LIGO	  GR	  test	  paper:	  gIMR and	  propagation

13

terior. We note that in the single-parameter analysis, for sev-
eral parameters, the GR value is found at quantiles close to
an equivalent of 2–2.5�, i.e., close to the tails of their pos-
terior probability functions. The fact that for the majority of
the early-inspiral parameters the GR value lies in the tails of
their posteriors, is not surprising since we find that these pa-
rameters have a substantial degree of correlation. Thus, if a
particular noise realization causes the posterior distribution of
one parameter to be o↵-centered with respect to zero, we ex-
pect that the posteriors of all the other parameters to be also
o↵-centered. This is indeed what we observe. The medians
for the early-inspiral single-parameter posteriors reported in
Table I show opposite sign shifts that follow closely the sign
pattern found in the PN series.

We repeated our single-parameter analysis on 20 datasets
obtained by adding NR waveforms with GW150914-like pa-
rameters to noise-only data segments close to GW150914. In
one instance, we observed �'̂i posterior distribution very sim-
ilar to those of Table I and Fig. 7. Thus, it is not unlikely
that instrumental noise fluctuations would cause the degree
of apparent deviation from GR found to occur in the single-
parameter quantiles for GW150914, even in the absence of an
actual deviation from GR. However, we cannot fully exclude
a systematic origin from inaccuracies or even missing physics
in our waveform models. Future observations will shed light
on this aspect.

In the multiple-parameter analyses, which account for cor-
relations between parameters, GR is usually found to be very
close to the median of the distribution. This is partly due to
the fact that we are not sensitive to most of the early-inspiral
parameters, with the exception of the 0PN and 0.5PN coe�-
cients. As for the intermediate and merger-ringdown param-
eters, since most of the SNR for GW150914 comes from the
high-frequency portion of the observed signal, we find that
the constraints on those coe�cients are very robust and essen-
tially independent of the analysis configuration chosen, single
or multiple.

Finally, the last two columns of Table I report the loga-
rithm of the ratio of the marginal likelihoods (the logarithm
of the Bayes factor log10 BGR

model) as a measure of the relative
goodness-of-fit between the IMRPhenom and gIMR models
(see Ref. [3] and references therein). If log10 BGR

model < 0 (> 0)
then GR fits the data worse (better) than the competing model.
The uncertainty over log10 BGR

model is estimated by running sev-
eral independent instances of LALInference. The log10 BGR

model
corroborates our findings that GW150914 provides no evi-
dence in favor of the hypothesis that GR is violated.7

7 Because of the normalization of the prior probability distributions, the
Bayes factors include a penalty factor — the so-called Occam factor —
for models that have more parameters. The wider the prior range, the more
severe the penalization. Therefore, di↵erent choices for � p̂i would lead to
di↵erent numerical values of log10 BGR

model. To establish the significance of
the Bayes factors, validation analyses [82, 83] would be necessary and will
be presented in forthcoming studies.
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FIG. 8. Cumulative posterior probability distribution for �g (black
curve) and exclusion regions for the graviton Compton wavelength
�g from GW150914. The shaded areas show exclusion regions from
the double pulsar observations (turquoise), the static Solar System
bound (orange) and the 90% (crimson) region from GW150914.

Constraining the graviton Compton wavelength. Since
the 1970s, there have been attempts to construct theories of
gravity mediated by a graviton with a non-zero mass. Those
attempts have led to conceptual di�culties, some of which
have been addressed, circumvented or overcome, but others
remain open (see Ref. [86] and references therein). Here, we
take a phenomenological approach and consider a hypotheti-
cal massive-graviton theory in which, due to a modification of
the dispersion relation, GWs travel at a speed di↵erent from
the speed of light.

In GR, gravitons are massless and travel at the speed of light
vg = c. In a hypothetical massive graviton theory the disper-
sion relation can be modified to E2 = p2c2 + m2

gc4 where E is
the graviton energy, p the momentum, and mg is the graviton
rest mass related to the graviton Compton wavelength as �g =
h/(mgc) with h the Planck constant. Thus, we have v2g/c2 ⌘
c2 p2/E2 = 1 � h2c2/(�2

gE2), and the massive graviton propa-
gates at an energy (or frequency) dependent speed. In such a
massive graviton theory the Newtonian potential is altered by
a Yukawa-type correction: '(r) = (GM/r)[1 � exp(�r/�g)].
Bounds that do not probe the propagation of gravitational in-
teractions when �g is finite (i.e., the so-called static bounds)
from Solar System observations [87, 88], model-dependent
large-scale dynamics of galactic clusters [89] and model-
dependent weak lensing observations [90] are 2.8 ⇥ 1012 km,
6.2 ⇥ 1019 km and 1.8 ⇥ 1022 km, respectively. The only dy-
namical bound to date comes from the binary-pulsar observa-
tions [91] and it is �g > 1.6 ⇥ 1010 km. If the Compton wave-
length of gravitons is finite, then lower frequencies propagate
slower compared to higher frequencies, and this dispersion
of the waves can be incorporated in the gravitational phasing
from a coalescing binary. In particular, neglecting all possible

[Will	  1998]
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FIG. 2. (Color online) Schematic diagram of the curvature-
potential phase space sampled by various experiments that
test GR. The y-axis shows the inverse of the characteristic cur-
vature length scale, while the x-axis shows the characteristic
gravitational potential. The characteristic mass and length
scale for each system plotted is summarized in Table II. The
lighter (blue) dot shows that the Shapiro time delay from
binary pulsars does probe strong curvature, though as illus-
trated in Fig. 3 it does not give information on the dynamical
regime. GW150914 samples a regime where the curvature
and the potential are both simultaneously large, and dynam-
ical, as it sweeps a finite range in the potential and curvature
length. The finite area of pulsar timing arrays is due to the
range in the GW frequency and the total mass of supermas-
sive BH binaries that such arrays may detect in the future.

touched. This frequency also roughly coincides with the
start of the ringdown, as the Fourier amplitude of the sig-
nal shows a break at around this frequency (see the right
panel of Fig. 1). Although all of these phases cannot be
sharply defined, we will here follow the LIGO/Virgo col-
laboration and refer to f 2 (10, 132) Hz as the inspiral
phase, and f 2 (132, 300) as the merger and ringdown
phase.

The previous observations make it very clear that the
binary BH coalescence that generated event GW150914 is
in the extreme gravity regime. One way to quantify this
is to compute the characteristic curvature R = M/L3

and the characteristic gravitational potential � = M/L,
where M and L are the characteristic mass and size of
the system. Following [22, 98], Fig. 2 shows these quan-
tities evaluated from f = 20Hz to merger with event
GW150914 (for illustrative purposes, we take L = r12
and M = m). For comparison purposes, we also show
the curvature and the gravitational potential for the LA-
GEOS satellites [99], the Earth-Moon System used in lu-
nar laser ranging [100], the Mercury-Sun system used in
perihelion precession observations, pulsar timing observa-
tions [101], and the double binary pulsar [102]; the mass
and length scale of each system is summarized in Table II.

M L
GW150914 64.8M� 190–1300km

Pulsar Shapiro Delay 1.34M� 12km

Pulsar Timing Arrays 106–109M� 109.6–1012km

Double Binary Pulsar 2.59M� 8.7 ⇥ 105km

LAGEOS 1M� 1R�
Lunar Laser Ranging 1M� 3.8 ⇥ 105km

Pericenter Precession of Mercury 1M� 5.8 ⇥ 107km

TABLE II. The characteristic mass and length scale cho-
sen to compute the characteristic curvature and potential in
Fig. 2. For event GW150914 and for pulsar timing arrays,
we extract the length scale from the observed frequency via
L = [M/(⇡f)2]1/3, where for the former we choose f = 20Hz
up to contact, while for the latter we choose f = 3 ⇥ 10�9–
5⇥ 10�7Hz.

Of course, binary pulsar observations can also sample
strong (but non-dynamical) gravitational fields through
observations of the Shapiro time delay (as the photons
emitted by one binary component graze the surface of
the companion), which is shown with a blue-shaded dot.
GW150914 lands in the far top right corner of the

phase space of Fig. 2, precisely where gravity is extreme,
but what this figure does not show very clearly is how
dynamical the gravitational field for each observation is.
Some of this can be inferred from the fact that GW150914
in Fig. 2 is shown as a line instead of a point (since it
proves a range of curvatures and potentials), but this de-
piction does not convey how dynamic event GW150914
is. This is shown in the left panel of Fig. 3, which is sim-
ilar to Fig. 2, except that the x-axis shows the radiation-
reaction time-scale sampled by each observation. We
model the latter via |T | = |Eb/Ėb|, where Eb is the char-
acteristic gravitational binding energy and Ėb is the rate
of change of this energy, which for a binary system we
approximate as the GW energy flux at spatial infinity,
i.e. |T | = (5/64)(m/⌘)v�8

12 , where v12 is the binary’s or-
bital velocity, m is the total mass and ⌘ = m1m2/m

2

is the symmetric mass ratio. For a binary system, this
quantity is exactly the same as �/�̇ and (up to factors
of order unity) R/Ṙ. Thus, T is a measure of how long
it takes the system, and in particular the gravitational
field and the curvature, to change appreciably. Observe
that GW150914 lands on the top left of the left panel of
Fig. 3, at least four orders of magnitude away from the
double binary pulsar; note that the Shapiro time delay
observation does not appear in this figure, as it is not a
dynamical constraint. For GW150914, how rapidly the
curvature and the potential sweep through the detector’s
sensitivity band is explicitly shown on the right panel of
Fig. 3.

[Yunes-‐Yagi-‐Pretorius,	  1603.09955]
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FIG. 3. (Color online) (Left) Schematic diagram of the curvature-radiation reaction time-scale phase space sampled by relevant
experiments shown in Fig. 2. As evident GW150914 samples a regime of dynamic gravity where the radiation-reaction timescale
is the shortest by many orders of magnitude. (Right) Characteristic curvature and strength of the Newtonian gravitational
potential as a function of GW frequency.

B. GW Model in GR and outside GR

1. IMRPhenom Model in GR

The LIGO/Virgo collaboration employed two main
waveform models (both calculated within GR) to recon-
struct the signal in [12]. One of these, the so-called IM-
RPhenom model [67–69], was heavily used to validate
GR. This phenomenological approach models the Fourier
transform of the response function as a piecewise func-
tion with 3 distinct pieces or phases, where each phase i
takes the following form:

h̃i(f) = Ai(f)e
i�i(f) . (1)

The three phases that are distinguished are the inspi-
ral, an intermediate phase and the merger-ringdown
phase. In [12], the LIGO/Virgo collaboration employed
the most recent IMRPhenom model [69], also called Phe-
nomD, but modified to include precession by rotating the
spin-aligned waveform to a precessing frame [103]. In
this paper, we will ignore precession e↵ects, since event
GW150914 is so short that precession is unimportant7.
We therefore describe below the PhenomD model of [69].
The di↵erences in the constraints on non-GR e↵ects ob-
tained with PhenomB and PhenomD waveforms are dis-
cussed in Appendix B.

In the inspiral phase, the waveform is modeled as fol-
lows. The amplitude is treated in PN theory, including

7 In fact, the LIGO/Virgo collaboration was unable to accurately
extract the individual spin components of the BH binary in event
GW150914, nor the spin parameter combination that character-
izes the amount of precession.

terms up to 3PN order that are known analytically, and
higher-order functionals (up to 4.5PN order) fitted to nu-
merical simulations. The phase is decomposed into two
contributions

�I(f) = �EI(f) + �LI(f) , (2)

where the early-inspiral part is simply

�EI(f) = 2⇡ftc��c�⇡

4
+

3

128⌘
(⇡mf)�5/3

7X

i=0

�i (⇡mf)i/3 ,

(3)
and the late inspiral part is given by

�LI(f) =
1

⌘


�0 + �1(mf) +

3

4
�2(mf)4/3

+
3

5
�3(mf)5/3 +

1

2
�4(mf)2

�
. (4)

The early inspiral parameters (tc,�c) correspond to a
constant time and phase o↵set, ⌘ = m1m2/m

2 is the
symmetric mass ratio with m = m1 +m2 the total mass,
and the �i coe�cients are functions of the component
masses and the component spins (see e.g. Appendix A
in [69]). The late inspiral parameters �0 and �1 can be
absorbed into �c and tc respectively, while �2, �3 and �4

are in principle functions of the system parameters that
represent (unknown) higher PN order corrections; these
are fitted to polynomials of these system parameters by
comparing to numerical simulations.
In the intermediate phase, the waveform is modeled

as follows. The amplitude is a fourth-order polynomial
in frequency, with coe�cients fitted to numerical simula-
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