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H0 (km s-1 Mpc-1)


Local Universe [Riess et al. 2016] 73.24 ± 1.74


Planck+WMAP+ACT+SPT+BAO 69.3 ± 0.7
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ÃijÃ
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❖ [Support from project CosmoToolkit (PIRG05-GA-2009-249290)]
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 �7ÃijÃ
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Further constraint: 


On  an  asymptotically  flat  space,  the  surface  terms  at 
infinity and around the punctures cancel: 


However,  there  is  no  surface  term  on  the  periodic 
boundaries. In a periodic space, the extrinsic curvature and 
the  scalar  curvature  cannot  both  be  zero!  No  time 
symmetric,  spatially-flat  solution  (homogeneous  dust 
models have the same properties).


Black-hole lattices


�
Z


@D


~r · d~S +


Z


D


 
R̃


8
 +


K2


12
 5 � 1


8
 �7ÃijÃ
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Keep a zero extrinsic curvature, but 
choose  a  conformal  metric  that  is 
not flat [Wheeler 1983, Clifton et al. 
2012]:


Notes: 


Solutions  only  for  positive  scalar 
curvature  (analogy  to  the  FLRW 
class);


The hamiltonian constraint is linear! 
One  can  use  the  superposition 
principle  to  construct  multi-black-
hole solutions.
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to Aij by Ãij = ⌅2Aij .


Let us focus on the hamiltonian constraint. We would like to solve this
equation with the “puncture” ansatz for the conformal factor:


⌅ =
M


r
(7)


[TODO: what is r?] and periodic boundary conditions. It can be easily proven,
then, that unlike in the asymptotically-flat case, if Kij and R are both zero,
then this is a slice of Minkowski spacetime. This becomes apparent if one
integrates both sides of equation 5 on the fundamental cell of the desired lattice
(see Figure ??):


0 =


⇤


V
�̃⌅ = �


⇤


Si


�̃⌅ +


⇤


So


�̃⌅ = �M (8)


which is only satisfied if M = 0. [TODO: I know this works if the metric is
conformally flat. Does it hold in general?]


Thus, for non-zeroM , there are at least two possibilities: a non-zero extrinsic
curvature or a non-zero spatial scalar curvature. In this work, we concentrate
on the Kij = 0 case, since the momentum constraint is trivally satisfied and the
hamiltonian constraint remains linear, and one can therefore construct multiple–
black-hole solution by superposition. We concentrate on the positive-R case,
where the spatial slices have the topology of S3. [TODO: In fact, they are
conformally S3. I think this is theorem, and we should cite it]


Notice that, whilst this argument strictly applies only to initial-data genera-
tion in the conformal transverse-traceless case, it is arguable that the additional
constraint due to the periodic requirement is quite a general feature.


2.1 Punctures on a 3–sphere


We consider puncture–like solutions of the hamiltonian constraint when �̃ij and
R̃ are the metric tensor and scalar curvature of S3:


�̃⌅ � R̃


8
⌅ = 0 (9)


We fix coordinates on S3 such that:


ds2 = d⇤2 + sin2 ⇤
�
d⇥2 + sin2 ⇥ d⇧2


⇥
(10)


2


�� � K2


12
�5 = 0







Black-hole lattices
General principle [Choquet-Bruhat, Kleban & Senatore 2016]. Some options:


Keep  a  flat  conformal  metric,  but 
use  a  non-zero  extrinsic  curvature 
[Yoo et al. 2012]:


Requires:


Numerical integration;


Extreme  care  with  periodic 
boundaries.


separation of the extrinsic curvature into its trace K and traceless part Aij :


�ij = ⌅4 �̃ij (3)


Kij =
K


3
�ij +Aij (4)


In terms of these, the constraints take the form:


�̃⌅ � R̃⌅ � K2


12
⌅5 +


1


8
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Other  properties,  however,  can  be  substantially  different.  In  particular, 
mapping the BH lattices to the FLRW class via their geometric properties leads 
to counterparts with much larger effective densities [Bentivegna & Korzyński 
2012, 2013]:
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                                                                               to use (fitting problem non 
                                                                               trivial). Fitting one observable 
                                                                               leads to a degradation in the 
                                                                               quality of fit to the others.
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Dust cosmologies
How universal is this result?
Same procedure in non-vacuum spacetimes, same ID restriction [Anninos 1999, Giblin, 
Mertens & Starkman 2015, Bentivegna&Bruni, 2015]:


Approach much more similar to standard cosmological treatments of perturbed fluids. 
Many analytical approximations available in various regimes.


DENSITY CONTRAST VOLUME ELEMENT
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❖ Domain size: 10 Gpc
❖ Smallest resolved features: 10 kpc
❖ Resolution: 1021 points
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Universal initial-data no-go


Length scaling follows FLRW class


Other properties can vary significantly
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