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➙ Non-linear Instability of AdS:  the origins 


• Consistent with 


    time  evolution  of  spherical  scalar  field  shell  in  AdS:   collapse  to  BH 
																																																																																																																							


	     No  matter  how  small   


        the  initial  amplitude  ε		is,   
        the  curvature  at  the origin   
        grows  &  a  small   BH   forms.	


• Linear perturbations in AdS do not decay: normal modes  ω L	=	1	+	l	+	2p



  => conjecture (Dafermos-Holzegel, 2006): 

                                               it should be non-linearly unstable


		[	Bizon-Rostworowski		2011	]	







➙ Understanding the onset of the instability using perturbation theory: 


• Weakly perturbative turbulent instability: 


     — A secular term of the form ε3 t appears  at 3rd order in the amplitude ε of linear seed   


     — Necessary condition for secular turbulent growth: linear spectrum is fully commensurable   


                                                                 [ OD,  Horowitz, Marolf, Santos, 2012 ] 


•Improved perturbation theory that captures the dynamics up to time scales    


      — two time scale formalism    [ Balasubramanian, Buchel, Green, Lehner, Liebling, 2014] 


      — renormalisation group perturbation methods    [ Craps, Evnin, Vanhoof, 2014 ]  


      — resonant approx.     [ Bizon, Maliborski, Rostworowski, 2015 ] 


• Question: Is  this  a  fine-tunning  process (spherical symmetry) ? 


    Consider non-spherically symmetric gravitational modes. 


      Includes rotating  modes: can  centrifugal  effects  balance  grav. collapse ? 


      ➙ Weakly perturbative turbulent analysis shows that this is  NOT  the case. 	
                                                                  [ OD,  Horowitz, Santos, 2011 ]
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Anti-de Sitter (AdS) is conjectured to be nonlinear unstable to a weakly turbulent mechanism that
develops a cascade towards high frequencies, leading to black hole formation [1, 2]. We give evidence
that the gravitational sector of perturbations behaves di↵erently from the scalar one studied in [2].
In contrast with [2], we find that not all gravitational normal modes of AdS can be nonlinearly
extended into periodic horizonless smooth solutions of the Einstein equation. In particular, we show
that even seeds with a single normal mode can develop secular resonances, unlike the spherically
symmetric scalar field collapse studied in [2]. Moreover, if the seed has two normal modes, more
than one resonance can be generated at third order, unlike the spherical collapse of [2]. We also
show that weak turbulent perturbative theory predicts the existence of direct and inverse cascades,
with the former dominating the latter for equal energy two-mode seeds.


1. Introduction — For many years, Anti-de Sitter
(AdS) spacetime was regarded as the odd cousin of de-
Sitter and Minkowski spacetimes. However, with the
dawn of AdS/CFT [3], studying gravitational dynamics
in AdS become more than a mere academic exercise.


A topic that has attracted particular attention over
the last years is the issue of global nonlinear stability of
AdS [1, 2, 4–43], which was ignited by the seminal work
of Bizon and Rostworowski in [2]. This instability was
first conjectured by Dafermos and Holzegel in [1] [56].
While it would be desirable to study the nonlinear stabil-
ity of AdS with no symmetry restrictions, this problem
seems intractable both from an analytical and numeri-
cal standpoints. To circumvent this, the authors of [2]
restricted themselves to spherical symmetry. However,
since there are no gravitational spherical waves within
pure Einstein’s theory of gravity, in [2] a massless scalar
field was added, which essentially controls all the dynam-
ics of the system.


The numerical results of [2] suggest that AdS is non-
linearly unstable to the formation of an arbitrarily small
black hole, whose mass is controlled by the energy con-
tained in the initial data - a weakly turbulent instability.
This is to contrast with Minkowski and de Sitter space-
times, for which the nonlinear stability problem has long
been proved [44, 45]. While this nonlinear instability
seems to occur for generic perturbations, there are per-
turbations which do not necessarily lead to an instabil-
ity [5, 6, 8, 34, 35, 38], leading to the existence of is-
lands of stability. How large are these islands as a func-
tion of the amplitude of the initial data, is a question
that has not yet been fully understood. There is how-
ever, a one-parameter family of initial data that seems
to be particularly important: time-periodic solutions of
the Einstein equation with a negative cosmological con-
stant. They correspond to nonlinear extensions of normal
modes of spherically symmetry scalar fields in AdS, and
were coined ‘oscillons’ [57].


In [2], not only the problem was analysed from a nu-


merical standpoint, but also an analytic method was pro-
posed to detect the onset of such an instability. The idea
is to use standard perturbation theory to third order in
the amplitude of the linear seed, which we schematically
denote by ". At third oder in ", a secular term of the
form t "3 was found, which invalidates standard pertur-
bation theory for timescales above O �


"�2
�
. This sec-


ular growth occurs because the linear spectrum is fully
commensurable and, as such, nonlinearities can create
resonances. This analytic approach was shortly after-
wards generalised for certain gravitational perturbations
[4], even though a more systematic approach for the grav-
itational perturbations has never been done.


There are modifications of standard perturbation the-
ory that can capture the dynamics up to time scales
t . "�2. Such schemes can be shown to be all equivalent,
and go under the following names: two time scale for-
malism [19], renormalisation group perturbation meth-
ods [23, 29] and resonant approximation [33]. They all
rely on the spherical symmetry assumption which, in par-
ticular, implicitly assumes that resonant modes appear in
a single sector of perturbations and that only a specific
type of resonant modes is relevant. We will see later that
it is not clear whether this is the case for gravitational
perturbations.


While we do not know if any solution of the Einstein
equation with a fully resonant spectrum necessarily pos-
sesses a nonlinear instability, it is clear it is a necessary
condition for the existence of the weakly turbulent insta-
bility, as shown in [5]. In this letter we perform third
order perturbation theory calculations for a plethora of
seeds, and find that the gravitational case is more rich
than the spherically symmetry cases analysed so far. Our
results indicate that the spherically symmetric scalar field
collapse is unlikely to be a good toy model for the general
gravitational collapse.
2. Perturbation theory — Consider Einstein-AdS4







➙ Understanding the onset of the instability using perturbation theory: 


•	Is  this  a  fine-tunning  process (spherical symmetry) ? 


    Consider non-spherically symmetric gravitational modes: 


      Includes rotating  modes: can  centrifugal  effects  balance  grav. collapse ? 


      ➙ Weakly perturbative turbulent analysis shows that this is not the case. 	
                                                                  [ OD,  Horowitz, Santos, 2011 ] 


	… but this is not the whole story… interesting twist:  


   non-spherical grav. modes  favour  the AdS non-linear instability 


       







• Expand  the  metric  around  global  AdS   as 


       At  each  order  ( i )  in  perturbation  theory, Einstein’s  equations  yield: 


     where  T (i)  depends  on  { h (  j ≤ i – 1 ) }  and  their  derivatives  and 


• Expand  in  terms  of  spherical  harmonics:  hab  ~  e i m φ Yl m(θ)


• There are two sectors: scalar and vector harmonics 


➙  Technical approach to study  grav. sector:  (standard)  perturbation  theory
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 ℓ counts  #  of  nodes







➙ Boundary  conditions


• Regularity  at  the  origin 


• Keep   boundary  metric  fixed  


        (ie  perturbations   preserve  global   AdS  asymptotics )   


  These  BCs  also  preserve  E,  J   







➙ General  Structure of perturbation problem


h(i+1)
`m (t, r)


•  Non-linearity  of  Einstein’s eqs:  


         start  with  a  given  pair   {ℓ, m}  ➙ it  generates  several  {ℓ, m}’s. 


    1st  task:  identify  decomposition of  T  as  a  sum  of  {ℓ, m}’s : 


• If                             has  an  harmonic  time  dependence  cos(ω t ) ,  then   	


                              will  exhibit  the  same  dependence , 	


        EXCEPT   when   ω   agrees  with  one  of  the  normal  frequencies  of  AdS:	


    	


     	
                                       
                                     Mode  is  said  to  be  RESONANT 	


•  Some resonances can be removed  with a frequency correction … 


    If  not,   AdS  is  non-linearly  unstable 


T (i+1)
`m (t, r)


h
(i+1)
`m = Hc(r) cos(!t) +Hs(r) sin(!t)t


T (i+1)(hji) =
X


`,m


T (i+1)
`m







➙ Back-reaction of SINGLE  grav. normal mode can already  trigger secular resonances 


• ONLY   grav.  normal  modes  that can be back-reacted up to O( ε 
3


 )  
   to yield a time-periodic soliton ( GEON ) are: 


        —  Scalar modes with   l	= m ≥  2  and  p=0,  
        —  Scalar modes with   l	= 2, m=0,1  and  p=0,   
        —  Vector modes with   l	= 2, m=0  and  p=0. 


•  { l, m, p}={2,2,0} case was back-reacted up to O( ε 5 )  
   … actually up to any  order:   full  nonlinear extension to a geon  [ Horowitz, Santos, 2014 ]. 


• ‘Few’ normal modes with a solitonic extension:  unique  to the gravitational sector.  
    Real (complex) scalar field: back-reaction of  any normal mode yields an oscillon  (boson star).  


• Due to gravity having two fundamentally distinct sectors (scalar and vector)  


    of normal modes whose ω spectra depend on two quantum #  (not one): l	and  p.  


   So different  { l, p }’s  can yield  the  same ω  ➙  system  more prone to develop secular resonances 


   Spherically symmetric scalar field has a single  normal mode sector;  spectrum depends only on p).  
        


• Gravitational  turbulent  instability  of  Anti-de Sitter (AdS):


For  any  initial  perturbation perturbation,  AdS  has  a  non-linear instability  that 
transfers  energy  from  low  to  high  frequency modes  &  eventually  leads  to  black  hole  formation. 


Energy  cascade  is  similar  to familiar  process  of  turbulence. 


→  Gravitational  description  of  turbulence ?


    →  The  BH  that  might  form  has  a single  isometry:  


           Kerr-AdS  BHs  might  then  not  be  the  only  rotating  BHs  of  Einstein  theory !   →  unexpected !
 


 Technically,  challenging  problem:


       We  had  to  solve  in  perturbation  theory  a  system  of   ~ 70   ODEs  !


Some Concrete  contributions  to  the  programme:


1)   Ultraspinning  instability:


?


?• Evolution along  the  parameter  space  of  solutions:


• Construct  non-linearly  (numerically)  


a1


a2


• Construct  non-linearly  (numerically)  
the  new  branch  of  axisymmetric BHs:


• Stability of   black   rings ?   


• Ultraspinning in  AdS systems.  AdS Black  rings. 


• Holographic   interpretation  of   BH  solutions / instabilities : 


BH  with  temperature  T QFT  at  finite   T


⤹
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• For spherically symmetry scalar field collapse:


      Collision of two normal modes  always  yields only  a  pair  of  irremovable resonances.


• Collision of two  gravitational  normal modes that do not  have a geon extension 


   generates  more  than  just  a  pair  of  irremovable resonances


• Strong evidence suggesting that the time evolution of the gravitational nonlinear instability


 should be more ‘dramatic’ and possibly ‘even faster’  than  spherical symmetric scalar field.


     (although our pert. theory analysis still breaks down at O(ε3) and thus for timescales above O(ε-2)


• Moduli space of rotating black hole solutions in AdS   [ see Way’s  talk ]:


 — r+ ➙ 0 limit of a (superradiant) `black resonator' is a geon only for  l	= m ≥  2,p = 0. 


 — Otherwise, limit likely to be singular


➙  Consequences when we have a seed with n ≥ 2 normal modes: 







• Seed with a single normal mode:  ω  of  secular resonances  =  ω  of  seed 


• Smoking gun of a  ω  cascade:  secular resonances with  ω different from  seed. 


                                              =>  starting with  superposition (collision) of at least  two  normal modes. 


➙ For example, take the seed:


• Two resonances, {l, m, p, ω}s = {4,4,0, 5 / L} and  {l, m, p, ω}s ={6,6,0, 7 / L}, removed with 


Poincaré-Lindstedt  ω  correction: 
                                                                                                                     


• But, also two  irremovable  secular  resonances, {l, m, p, ω}s= {{2,2,0, 3 / L},{8,8,0, 9 / L}} 


   whose quantum # do  not  coincide with seed:


            — First mode:   ω = 3 / L    ➙  smaller  than two  ω’s  of   seed. 


       — Second mode:     ω = 9 / L    ➙   larger  than two  ω’s  of  seed. 


➙ So, weakly pert. turbulent mechanism predicts generation of irremovable resonances with


       both  larger and smaller ω  than  those  of  the  seed 


                            =>  time evolution  should proceed with   direct  and inverse  ω  cascades.


➙  Direct and inverse turbulent cascades 
4


lar resonances at third order that have frequencies dif-
ferent from the seed. This requires starting with a seed
that is the superposition (collision) of at least two normal
modes. As an example, take the seed:


{`,m, p, !̄}s = {4, 4, 0, 5/L}, amplitude A(1)
(s)4",


{`,m, p, !̄}s = {6, 6, 0, 7/L}, amplitude A(1)
(s)6", (10)


where A(1)
(s)4 and A(1)


(s)6 are O(1) quantities.


At second order, 15 scalar and 10 vector harmonics
are excited and the solution can be made asymptotically
global AdS and regular without resonances. Third or-
der excites a total of 30 scalar and 22 vector harmonics.
There are two resonances, {`,m, p,!}s = {4, 4, 0, 5/L}
and {`,m, p,!}s = {6, 6, 0, 7/L}, which can be removed
using a Poincaré-Lindstedt frequency correction (9) with


!
(2)
4,4,0 and !


(2)
6,6,0 given by the values in Table I. But we


also have two secular irremovable resonances,


{`,m, p,!}s =
�{2, 2, 0, 3/L}, {8, 8, 0, 9/L} , (11)


whose quantum numbers do not coincide with (10). The
first mode in (11) has ! = 3


L ⌘ !̄`s=2,p=0. From (5) this
is a normal mode frequency smaller than the two fre-
quencies of the seed (10). On the other hand, the second
mode in (11) has ! = 9


L ⌘ !̄`s=8,p=0 which is a normal
mode frequency larger than any of the two frequencies
contained in the seed (10). This shows that the weakly
perturbative turbulent mechanism predicts the genera-
tion of irremovable resonances that have both larger and
smaller frequency than those present in the seed. This
signals that the time evolution of such a seed should pro-
ceed with direct and inverse cascades of frequencies.


In an attempt to understand which of the cascades
is likely to dominate faster the time-evolution, we have
compared the coe�cient of the direct and inverse cas-
cades. In order to do this in a gauge invariant way, we
computed the boundary holographic stress energy ten-
sor [50, 51] and its concomitant energy density. We then
compared the ratio between the two secular terms. If we
assume that each of the modes in the seed carries equal


energy, the direct cascade is a factor of 10 larger than
the inverse cascade, perhaps signalling that black hole
formation is likely to occur at late times.


Needless to state that these perturbation theory con-
clusions on the direct and inverse cascades should be ac-
companied by further investigations within the two time
scale formalism [19], renormalisation group perturbation
methods [23, 29] and resonant approximation [33] (as was
done for the spherically symmetric scalar case).


5. Gravitational sector is more populated by


secular resonances — In this section we highlight
that gravitational perturbations about AdS have a much
richer structure than in the scalar field sector. On one
hand, unlike the scalar field case, this is because seeds


with a single mode can already develop irremovable reso-
nances (Section 3). In addition, there is an enhancement
on the number of irremovable resonances if we start with
two or more normal modes of AdS.
To illustrate this, take for seed the combination:


{`,m, p, !̄}s = {4, 4, 0, 5/L}, amplitude A(1)
(s)4" ;


{`,m, p, !̄}v = {7, 6, 0, 9/L}, amplitude A(1)
(v)7" . (12)


The first is a scalar mode that in isolation does not de-
velop irremovable resonances, while the second is a vector
mode that does so: see Tables I and II.
At second order, there are 16 scalar and 13 vec-


tor harmonics excited and the solution can be made
asymptotically global AdS and regular without intro-
ducing resonances. At third order, a total of 34 scalar
and 31 vector harmonics are excited. There are two
resonances, namely {`,m, p,!}s = {4, 4, 0, 5/L} and
{`,m, p,!}v = {7, 6, 0, 9/L} which we remove using a
Poincaré-Lindstedt frequency correction (9),


!(2)
4,4,0L = �7010569125


77792
� 1860284480041845


7607296


(A(1)
(v)7)


2


(A(1)
(s)4)


2
,


!(2)
7,6,0L = �8548214990390361


19124224
� 21681637296525


271960832


(A(1)
(s)4)


2


(A(1)
(v)7)


2
.


Here, the first contribution to each frequency matches
the values in Tables I and II. It removes a resonance of the
type 2!̄4 � !̄4 = 5/L and 2!̄7 � !̄7 = 9/L, respectively.
The second contribution is due to the interaction of the
initial modes in (12) and is proportional to their relative
initial amplitudes. It removes a resonance of the type
!̄4+ !̄7� !̄7 = 5/L and !̄7+ !̄4� !̄4 = 9/L, respectively.
In addition we have 7 irremovable secular resonances


with quantum numbers found in the normal mode spectra
(5) and (7), but that do not coincide with the data (12),


{`,m, p,!}s =
�{6, 6, 1, 9/L}, {8, 6, 0, 9/L} ;


{`,m, p,!}s =
�{8, 8, 2, 13/L}, {10, 8, 1, 13/L},
{12, 8, 0, 13/L} ;


{`,m, p,!}v =
�{9, 8, 1, 13/L}, {11, 8, 0, 13/L} . (13)


Here, the first line resonances are of the type 2!̄7 �
!̄7 = 9/L and coincide with those in the last column
of Table II when we start with the single normal mode
{`,m, p, !̄}v = {7, 6, 0, 9/L}. However, the second and
third line resonances are of the type 2!̄7 � !̄4 = 13/L
and thus a consequence of the two-mode collision (12).


If we collide two geons, like in (10), we get only two ir-
removable secular resonances. But when one of the start-
ing modes � like (12) � or both do not have a geon ex-
tension, more than two secular resonances are generated.
This is unique to the gravitational sector.


6. Final discussions — The educated and judi-
ciously chosen examples that we have analysed in Tables


3


Normal mode # # Removable Secular


{`,m, p, !̄} modes modes resonance resonances


at O (") O �
"2
� O �


"3
� ⇣


�L!(2)
⌘


{`,m, p,!}
{2,0,0, 3


L}s 6s 8s {2, 0, 0, 3
L}s None


0v 0v
�


3663
8960


�
(Geon ?)


{2, 0, 1, 5
L}s 6s 8s {2, 0, 1, 5


L}s {4, 0, 0, 5
L}s


0v 0v
�


34397
5376


�


{4, 0, 0, 5
L}s 10s 14s {4, 0, 0, 5


L}s {2, 0, 1, 5
L}s


0v 0v
�


52311625
21446656


�


{2,1,0, 3
L}s 5s 5s {2, 1, 0, 3


L}s None


2v 4v
�


123
64


�
(Geon ?)


{2,2,0, 3
L}s 4s 4s {2, 2, 0, 3


L}s None


2v 2v
�


14703
1120


�
(Geon)


{2, 2, 1, 5
L}s 4s 4s {2, 2, 1, 5


L}s {4, 2, 0, 5
L}s


2v 2v
�


9409723
70560


� {3, 2, 0, 5
L}v


{3,3,0, 4
L}s 5s 5s {3, 3, 0, 4


L}s None


3v 3v
�


27881625
32032


�
(Geon)


{3, 2, 0, 4
L}s 5s 6s {3, 2, 0, 4


L}s {2, 2, 0, 4
L}v


2v 5v
�


8081875
72072


�


{4,4,0, 5
L}s 6s 6s {4, 4, 0, 5


L}s None


4v 4v
�


7010569125
77792


�
(Geon)


{4, 2, 0, 5
L}s 8s 10s {4, 2, 0, 5


L}s {2, 2, 1, 5
L}s


4v 7v
�
163492329375
243955712


� {3, 2, 0, 5
L}v


{6,6,0, 7
L}s 8s 8s {6, 6, 0, 7


L}s None


6v 6v
⇣
�L!(2)


6,6,0


⌘
(Geon)


TABLE I: Back-reaction of seeds with a single scalar nor-
mal mode. The first column describes the quantum numbers
{`,m, p, !̄}j (j 2 {s,v}) of the normal mode we start with
at linear order. Each row describes a distinct case. The sec-
ond and third columns display the number (#) of scalar (s)
and vector (v) harmonics that are excited at 2nd and 3rd or-
der, respectively. In the fourth column we identify the quan-
tum numbers {`,m, p,!}j of the third order removable reso-
nance. It is also given the frequency correction �L!(2) that
removes it. The last column identifies the secular resonances
{`,m, p,!}j. (In the last row, �L!(2)


6,6,0 = 8231910851500875
3090464 ).


all of the type ! = 2!̄ � !̄. Out of these, and for all the
seed cases, there is a harmonic whose quantum numbers
{`,m, p,!} coincide with those ({`,m, p, !̄}) we started
with in the seed. Such case is a removable resonance


since we can introduce a Poincaré-Lindstedt frequency
correction !(2) at order O("2) (see e.g. [48]),


! = !̄ + "2!(2) +O("4), (9)


that we can then choose to eliminate the secular contri-
bution in (4), while keeping the solution regular at the
origin and asymptotically global AdS. These frequency
corrections are in the fourth column of Tables I and II.


The situation is di↵erent for those resonances (if
present) whose quantum numbers do not match the lin-


Normal mode # # Removable Secular


{`,m, p, !̄} modes modes resonance resonances


at O (") O �
"2
� O �


"3
� ⇣


�L!(2)
⌘


{`,m, p,!}
{2,0,0, 4


L}v 6s 0s {2, 0, 0, 4
L}v None


0v 6v
�


1469
26880


�
(Geon ?)


{2, 0, 1, 6
L}v 6s 0s {2, 0, 1, 6


L}v {4, 0, 0, 6
L}v


0v 6v
�


19081
376320


�


{2, 1, 0, 4
L}v 5s 4s {2, 1, 0, 4


L}v {3, 1, 0, 4
L}s


2v 5v
�


72361
322560


�


{2, 2, 0, 4
L}v 4s 2s {2, 2, 0, 4


L}v {3, 2, 0, 4
L}s


2v 4v
�


1247
1008


�


{3, 2, 0, 5
L}v 5s 5s {3, 2, 0, 5


L}v {2, 2, 1, 5
L}s


3v 6v
�


31995875
4612608


� {4, 2, 0, 5
L}s


{7, 6, 0, 9
L}v 10s 9s {7, 6, 0, 9


L}v {6, 6, 1, 9
L}s


7v 8v
⇣
�L!(2)


7,6,0


⌘
{8, 6, 0, 9


L}s


TABLE II: Back-reaction of a seed with a single vector normal
mode. The information is displayed as in Table I. The last
frequency correction is �L!(2)


7,6,0 = 8548214990390361
19124224 .


ear seed, which are listed in the last column of Tables I
and II. In this case we have secular growth because the
solution cannot be made regular at the origin without
introducing the linearly growing amplitude contribution
in (4) [59].


There are however a ‘few’ (although a countable in-
finite number of) exceptions to this scenario. Indeed,
a few normal modes can be back-reacted to O(3) and
rendered regular without introducing secular resonances.
These are the boldface modes in Tables I and II [60]. In
the {`,m, p, !̄}s = {2, 2, 0, 3/L} case we have explicitly
checked that there are no secular resonances also at O(5)
[4] and actually at any order (if we introduce frequency
corrections at each even order, ! = !̄ +


P
j=1 "


2j!(2j))
since the full nonlinear solution has constructed numer-
ically in [49]. The structure of the problem indicates
this should hold for the other cases `s = ms � 2 and
ps = 0. Such a gravitational normal mode that can be
back-reacted to yield a nonlinear horizonless regular solu-
tion is called a geon. It is invariant under a Killing vector
which is K ⌘ @t +


!
m@�. Thus, it is not time symmetric


neither axisymmetric but time-periodic [61].


4. Direct and inverse turbulent cascades — In
this section we show that the weakly perturbative turbu-
lent mechanism predicts the existence of direct but also
inverse frequency cascades to be observed in time evo-
lution simulations. Although a seed with a single grav-
itational normal mode can already trigger secular reso-
nances, their frequency is always the same as the normal
mode frequency we start with. The smoking gun of a
frequency cascade is given by the appearance of secu-


 for  a choice of  ω4,4,0(2) &  ω6,6,0(2)







Compare the coefficient of the direct and inverse cascades  (in a gauge invariant way):


1) Compute boundary holographic stress energy tensor and associated energy density.


 


2)  compare the  ratio  between  the  two secular terms. 


       If we assume that each of the modes in the seed carries equal energy, 


       the direct cascade  is  a  factor  of  10  larger than the inverse cascade, 


        perhaps signalling that black hole formation is likely to occur at late times. 


➙  which of the cascades is likely to dominate faster the time-evolution?







➙  Conclusions:
•Surprisingly,  centrifugal  effects  cannot balance  grav. collapse  


                                   i.e. cannot halt AdS non-linear instability 


• Actually, non-spherical grav. modes favour the AdS non-linear instability 


•Only a few gravitational normal modes (scalar modes with l	=	m	≥		2	,	p=0) 


   can be back-reacted to non-linear order to yield a geon 


• Weakly perturbative turbulent analysis: 


   — predicts the existence of both direct and inverse frequency cascades  


   — suggests the former should dominate the late time evolution
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Normal mode # # Removable Secular


{`,m, p, !̄} modes modes resonance resonances
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243955712
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{6,6,0, 7
L}s 8s 8s {6, 6, 0, 7
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⇣
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⌘
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TABLE I: Back-reaction of seeds with a single scalar nor-
mal mode. The first column describes the quantum numbers
{`,m, p, !̄}j (j 2 {s,v}) of the normal mode we start with
at linear order. Each row describes a distinct case. The sec-
ond and third columns display the number (#) of scalar (s)
and vector (v) harmonics that are excited at 2nd and 3rd or-
der, respectively. In the fourth column we identify the quan-
tum numbers {`,m, p,!}j of the third order removable reso-
nance. It is also given the frequency correction �L!(2) that
removes it. The last column identifies the secular resonances
{`,m, p,!}j. (In the last row, �L!(2)


6,6,0 = 8231910851500875
3090464 ).


all of the type ! = 2!̄ � !̄. Out of these, and for all the
seed cases, there is a harmonic whose quantum numbers
{`,m, p,!} coincide with those ({`,m, p, !̄}) we started
with in the seed. Such case is a removable resonance


since we can introduce a Poincaré-Lindstedt frequency
correction !(2) at order O("2) (see e.g. [48]),


! = !̄ + "2!(2) +O("4), (9)


that we can then choose to eliminate the secular contri-
bution in (4), while keeping the solution regular at the
origin and asymptotically global AdS. These frequency
corrections are in the fourth column of Tables I and II.


The situation is di↵erent for those resonances (if
present) whose quantum numbers do not match the lin-
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TABLE II: Back-reaction of a seed with a single vector normal
mode. The information is displayed as in Table I. The last
frequency correction is �L!(2)


7,6,0 = 8548214990390361
19124224 .


ear seed, which are listed in the last column of Tables I
and II. In this case we have secular growth because the
solution cannot be made regular at the origin without
introducing the linearly growing amplitude contribution
in (4) [59].


There are however a ‘few’ (although a countable in-
finite number of) exceptions to this scenario. Indeed,
a few normal modes can be back-reacted to O(3) and
rendered regular without introducing secular resonances.
These are the boldface modes in Tables I and II [60]. In
the {`,m, p, !̄}s = {2, 2, 0, 3/L} case we have explicitly
checked that there are no secular resonances also at O(5)
[4] and actually at any order (if we introduce frequency
corrections at each even order, ! = !̄ +


P
j=1 "


2j!(2j))
since the full nonlinear solution has constructed numer-
ically in [49]. The structure of the problem indicates
this should hold for the other cases `s = ms � 2 and
ps = 0. Such a gravitational normal mode that can be
back-reacted to yield a nonlinear horizonless regular solu-
tion is called a geon. It is invariant under a Killing vector
which is K ⌘ @t +


!
m@�. Thus, it is not time symmetric


neither axisymmetric but time-periodic [61].


4. Direct and inverse turbulent cascades — In
this section we show that the weakly perturbative turbu-
lent mechanism predicts the existence of direct but also
inverse frequency cascades to be observed in time evo-
lution simulations. Although a seed with a single grav-
itational normal mode can already trigger secular reso-
nances, their frequency is always the same as the normal
mode frequency we start with. The smoking gun of a
frequency cascade is given by the appearance of secu-
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TABLE I: Back-reaction of seeds with a single scalar nor-
mal mode. The first column describes the quantum numbers
{`,m, p, !̄}j (j 2 {s,v}) of the normal mode we start with
at linear order. Each row describes a distinct case. The sec-
ond and third columns display the number (#) of scalar (s)
and vector (v) harmonics that are excited at 2nd and 3rd or-
der, respectively. In the fourth column we identify the quan-
tum numbers {`,m, p,!}j of the third order removable reso-
nance. It is also given the frequency correction �L!(2) that
removes it. The last column identifies the secular resonances
{`,m, p,!}j. (In the last row, �L!(2)


6,6,0 = 8231910851500875
3090464 ).


all of the type ! = 2!̄ � !̄. Out of these, and for all the
seed cases, there is a harmonic whose quantum numbers
{`,m, p,!} coincide with those ({`,m, p, !̄}) we started
with in the seed. Such case is a removable resonance


since we can introduce a Poincaré-Lindstedt frequency
correction !(2) at order O("2) (see e.g. [48]),


! = !̄ + "2!(2) +O("4), (9)


that we can then choose to eliminate the secular contri-
bution in (4), while keeping the solution regular at the
origin and asymptotically global AdS. These frequency
corrections are in the fourth column of Tables I and II.


The situation is di↵erent for those resonances (if
present) whose quantum numbers do not match the lin-
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TABLE II: Back-reaction of a seed with a single vector normal
mode. The information is displayed as in Table I. The last
frequency correction is �L!(2)


7,6,0 = 8548214990390361
19124224 .


ear seed, which are listed in the last column of Tables I
and II. In this case we have secular growth because the
solution cannot be made regular at the origin without
introducing the linearly growing amplitude contribution
in (4) [59].


There are however a ‘few’ (although a countable in-
finite number of) exceptions to this scenario. Indeed,
a few normal modes can be back-reacted to O(3) and
rendered regular without introducing secular resonances.
These are the boldface modes in Tables I and II [60]. In
the {`,m, p, !̄}s = {2, 2, 0, 3/L} case we have explicitly
checked that there are no secular resonances also at O(5)
[4] and actually at any order (if we introduce frequency
corrections at each even order, ! = !̄ +


P
j=1 "


2j!(2j))
since the full nonlinear solution has constructed numer-
ically in [49]. The structure of the problem indicates
this should hold for the other cases `s = ms � 2 and
ps = 0. Such a gravitational normal mode that can be
back-reacted to yield a nonlinear horizonless regular solu-
tion is called a geon. It is invariant under a Killing vector
which is K ⌘ @t +


!
m@�. Thus, it is not time symmetric


neither axisymmetric but time-periodic [61].


4. Direct and inverse turbulent cascades — In
this section we show that the weakly perturbative turbu-
lent mechanism predicts the existence of direct but also
inverse frequency cascades to be observed in time evo-
lution simulations. Although a seed with a single grav-
itational normal mode can already trigger secular reso-
nances, their frequency is always the same as the normal
mode frequency we start with. The smoking gun of a
frequency cascade is given by the appearance of secu-







Black holes with a single Killing vector field


Geons as special solutions


Geons - Horowitz and JES ’14


Geons are regular horizonless solutions of the Einstein equation,
which from the QFT perspective do not seem to thermalize.
The boundary stress-tensor contains regions of negative and positive
energy density around the equator:


It is invariant under


K =
@


@t
+


!


m


@


@�
,


which is timelike near the poles but
spacelike near the equator.


It satisfies the first law m dE = ! dJ .


Unclear if they can have the same energy, i.e. coexist, with large
AdS black holes!
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• Geon: regular horizonless solutions of Einstein-AdS  


• Invariant under single helical Killing vector field: 


 
       which is timelike near the poles but spacelike near the equator.  


   Thus, it is not time symmetric neither axisymmetric but time-periodic 


• Obeys the first law:   dE = ( ω/m ) dJ 


• From the QFT perspective do not seem to thermalize. 


  Boundary stress-tensor has regions of  negative and positive energy density around the equator: 


K = @t +
!


m
@'


• Gravitational  turbulent  instability  of  Anti-de Sitter (AdS):


For  any  initial  perturbation perturbation,  AdS  has  a  non-linear instability  that 
transfers  energy  from  low  to  high  frequency modes  &  eventually  leads  to  black  hole  formation. 


Energy  cascade  is  similar  to familiar  process  of  turbulence. 


→  Gravitational  description  of  turbulence ?


    →  The  BH  that  might  form  has  a single  isometry:  


           Kerr-AdS  BHs  might  then  not  be  the  only  rotating  BHs  of  Einstein  theory !   →  unexpected !
 


 Technically,  challenging  problem:


       We  had  to  solve  in  perturbation  theory  a  system  of   ~ 70   ODEs  !


Some Concrete  contributions  to  the  programme:


1)   Ultraspinning  instability:


?


?• Evolution along  the  parameter  space  of  solutions:


• Construct  non-linearly  (numerically)  


a1


a2


• Construct  non-linearly  (numerically)  
the  new  branch  of  axisymmetric BHs:


• Stability of   black   rings ?   


• Ultraspinning in  AdS systems.  AdS Black  rings. 


• Holographic   interpretation  of   BH  solutions / instabilities : 


BH  with  temperature  T QFT  at  finite   T


⤹
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Some properties of geons:







