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Cosmology as a Condensate of Geometry


In any theory such as LQG which predicts that space-time is
constituted of quanta of geometry, it seems reasonable to assume
that in large cosmological space-times:


there are many quanta of geometry,
one quanta contributes a small fraction of the spatial volume,
cosmological expansion is due to new quanta being added.


Furthermore, the improved dynamics of loop quantum cosmology
suggest that the N quanta are in fact in the same state and that
each contributes the same minimal Vmin to the total volume,


Vtot = NVmin.


If all the quanta are indeed in the same state, this suggests using
condensate states to extract cosmology from LQG.


This in turn directly leads to group field theory, a field theory for
the quanta of geometry of LQG.
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Group Field Theory with a Scalar Field
Group field theory (GFT) can be seen as a second-quantized
language for loop quantum gravity, where the field operators


ϕ̂ j1,j2,j3,j4,ι
m1,m2,m3,m4


(φ), ϕ̂† j1,j2,j3,j4,ι
m1,m2,m3,m4


(φ),


create and annihilate quanta of geometry: spin network nodes [Oriti].


The ji and mi colour the links of the (four-valent) spin network node
and the intertwiner ι and the scalar field φ both live on the spin
network nodes. Connectivity is imposed via projectors on links.


The classical GFT action S(ϕ, ϕ̄) is typically chosen so that the
perturbative expansion of the GFT partition function matches the
sum over geometries of a spin foam model. In the simplest GFT
actions for quantum gravity with V (φ) = 0, the dominant terms are


S ∼
∑
ji ,mi ,ιi


∫
φi


[
ϕ̄K


(0)
2 ϕ + ϕ̄K


(2)
2 ∂2


φϕ
]


+
∑
ji ,mi ,ιi


∫
φi


[
ϕ̄5 V̄5 + ϕ5 V5


]
.
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Condensate States


A simple family of condensate states are the Gross-Pitaevskii
condensate states, i.e., coherent states of the GFT field operator
which are, up to a numerical prefactor, [Gielen, Oriti, Sindoni]


|σ〉 ∼ exp


( ∑
ji ,mi ,ι


∫
dφ σji ,ι


mi
(φ)ϕ̂† ji ,ι


mi
(φ)


)
|0〉,


where σji ,ι
mi


(φ) is the condensate wave function. Note that σji ,ι
mi


(φ) is
not normalized; rather, its norm gives the number of fundamental
GFT quanta.


Importantly, the massless scalar field can be used as a relational
clock: σji ,ι


mi
(φo) can be understood as the condensate wave function


evaluated at the ‘time’ φo . So, imposing the quantum equations of
motion on |σ〉 gives relational dynamics of σji ,ι


mi
(φ) with respect to φ.
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The Form of σ ji ,ι
mi (φ) and its Dynamics


It is important to make choices for σji ,ι
mi


(φ) so that the condensate
state represents a cosmological space-time.


We are interested in the spatially flat FLRW space-time.
So we neglect connectivity: the main observable is the total
volume where connectivity is unimportant, and the space-time is
spatially flat so we do not need to worry about encoding the
spatial curvature in the connectivity of the graph [Gielen, Oriti, Sindoni].


We are only interested in isotropic observables.
So we restrict our attention to equilateral (isotropic)
configurations, σji ,ι


mi
(φ)→ σj(φ).


The dynamics of the condensate state are determined by the first
Schwinger-Dyson equation, 〈σ| δS


δϕ̄
|σ〉 = 0. The other Schwinger-


Dyson equations should be approximately satisfied in the regime
where |σ〉 is an approximate solution (i.e., where interactions are
small).
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The Small Interactions Approximation


The Gross-Pitaevskii condensate approximation assumes that
interactions are small. Thus, the regime of validity of this
approximation is where the interaction term is negligible. To consider
cases when the interaction term becomes important, it will be
necessary to go beyond the Gross-Pitaevskii approximation and
include interactions (i.e., connectivity information).


As can easily be checked in the equation of motion for σj , the
interaction term will become large when |σj | becomes sufficiently
large. This is the large volume limit: the Gross-Pitaevskii
condensate approximation breaks down at large volumes.


Interactions becoming important at large volumes may be related to
the fact that the connectivity information has been ignored: all GFT
quanta are interacting with all other quanta, not only their
neighbours. Restoring connectivity information may well fix this.
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The Mesoscopic Regime


In the remainder, I will consider the mesoscopic regime where the
Gross-Pitaevskii approximation can be trusted (|σj | sufficiently small)
and where there are enough quanta for a continuum space-time
interpretation to be viable (|σj | sufficiently large.)


Such a regime will exist for some GFT actions (but not all),
depending on the parameters in the action. Here, I will take such a
GFT action and only work in this mesoscopic regime.
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Coarse-Grained Equations of Motion


From the equations of motion for the condensate wave function, we
can extract relational dynamics for coarse-grained observables like the
total spatial volume and the momentum of the massless scalar field:


π′
φ = 0,


(
V ′


3V


)2


=


2
∑


j Vj |σj | sgn(|σj |′)
√
Ej −


Q2
j


|σj |2
+ m2


j |σj |2


3
∑


j Vj |σj |2



2


,


where Ej ,Qj are constants of the motion, mj depends on the coupling
constants in the GFT action, Vj ∼ j3/2`3


Pl, and f ′ := ∂φf .


The first equation is exactly the continuity equation for a massless
scalar field.
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The Condensate Friedmann Equation


At large volumes, |σj | is large and in this limit, choosing the coupling
constants in the GFT action such that m2


j = 4πG ,(
V ′


3V


)2


=
4πG


3
,


which is exactly the Friedmann equation for a spatially flat FLRW
space-time in terms of the relational time φ.


⇒ The correct Friedmann dynamics are recovered in the semi-
classical large volume limit, for an appropriate choice of coupling
constants in the GFT action.


Furthermore, a closer analysis of the more general Friedmann
equation shows that there is always a bounce in the volume: V = 0 is
never reached and so the big-bang and big-crunch singularities are
generically resolved.
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Recap


Motivated by simple arguments combined with insights from
LQC, we made a specific ansatz on the type of state in (the
GFT reformulation of) LQG that corresponds to cosmological
space-times: GFT condensate states.


The equations of motion for the condensate states are
determined by the GFT action, and from these equations of
motion we can extract the continuity and Friedmann equations.


The classical Friedmann equations are recovered in an
appropriate semi-classical limit for some choices of parameters in
the GFT action.


The classical singularity is resolved and is generically replaced by
a bounce.


The LQC effective Friedmann equations are (almost) recovered
for a natural choice of the condensate wave function.
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Outlook


There are many open questions, including:


Study other condensate wave functions and GFT actions [Gielen],


Allow for scalar fields with non-trivial potentials,


Calculate error in higher order Schwinger-Dyson equations,


Include spatial curvature and anisotropies,


Understand how to handle large interactions [de Cesare, Pithis, Sakellariadou],


Include connectivity information in the analysis,


And many more. . .


Thank you for your attention!
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