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Discreteness + Lorentz Invariance ⇒ Non-locality
A causal set is a locally finite, partially ordered set. For our purposes
you can think of it as a concrete model of a discrete Lorentz invariant
spacetime.


Marrying discreteness with LI needs kinematic randomness. This leads to a
radical form of nonlocality.
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Causal Set d’Alembertians (R.Sorkin, F.Dowker, DB, L.Glaser)


A concrete example of how nonlocality may affect physics on a causet is
given by discrete analogue of �:


Lattice � = finite difference equation between nearest neighbours


But NN in which sense? To preserve LI need NN in all frames: treat all NN
equally.


Following these guidelines one can construct (retarded) causet
d’Alembertians in all dimensions


B(d)
xy =


1


l2


{
ad x = y


bdfd(n(x, y)) y ≺ x


Dynamics of, say, a scalar field φ would then be defined by


Bφx =
∑
y≺x


Bxyφy =
1


l2


(
adφx + bd


∑
y≺x


fd(n(x, y))φy


)
= 0.


Assuming fundamental dynamics given by B leads to effective, nonlocal
dynamics in the continuum...







Continuum Nonlocal Field Theory (A. Belenchia, S.Liberati, DB; M.Saravani, S.Aslanbeigi)


Causet d’Alembertians lead to effective nonlocal continuum dynamics:


�̃(d)φ(x) =
1


l2n


(
adφ(x) +


bd
ldn


∫
J−(x)


ddy
√
−g fd(Vxy/ldn) e−Vxy/l


d
nφ(y)


)


Note: (1) �̃→ � as ln → 0, (2) ln ≥ l.


Can construct nonlocal QFTs based on these operators. QFT properties
determined by singularity structure of (momentum space) Green function.


R


F


iW(x,y)


iW(y,x)


A continuum of massive modes k2 < 0 con-
tribute to 2-point function


W (x−y) = W0(x−y)+


∫ ∞
0


dµ2ρ(µ2)Wµ(x−y)


W0 and Wµ are Wightman functions of
local, massless and massive fields respec-
tively. ρ is spectral density function de-
termined by choice of �̃.







Unruh-DeWitt Detectors Coupled to Nonlocal Fields (A. Belenchia, DB, E.


Martin-Martinez, M.Saravani)


Response of an UDW detector with gap Ω := E2 − E1 coupled to a scalar
field in its vacuum state is


F(Ω, T ) =


∫ ∞
−∞
dτ


∫ ∞
−∞
dτ ′e−iΩ∆τW (∆τ)χ


( τ
T


)
χ
(τ ′
T


)
For a nonlocal field this picks up two contributions


F(Ω, T ) = F0(Ω, T ) +


∫ ∞
0


dµ2ρ(µ2)Fµ(Ω, T )


where F0 and Fµ are the responses for local massless and massive fields
respectively.


For an inertial detector, and a field theory with ρ(µ2) that decays
exponentially fast as µ→∞ and goes like ρ ≈ l2n as µ→ 0, e.g.


ρ(µ2) = l2ne
−αl2nµ


2


, in the regime Ω < 0, |Ω|T � 1


∆ :=
F(Ω, T )− F0(Ω, T )


F0(Ω, T )
≈ |Ω|2l2n







A Concrete Experimental Setup


Can this deviation from local physics be detected in a lab?


If the experimenter has the ability to repeat the experiment ∼ 109times
then it will be able to distinguish the two probability distributions with
∆ ∼ 10−10. For Ω ∼ 1022Hz this would cast a bound on ln . 10−19m (∼
LHC bound). Is this far fetched?


Since we are analysing process of spontaneous emission we could potentially
have large number of events. Consider for example 20


11Na which has a
half-life of ∼500ms, decays into EM excited, highly unstable 20


10Ne which
then decays to its ground state emitting ∼11MeV γ-radiation, i.e.
|Ω| ∼ 10MeV.


200g of 20
11Na would therefore give Nγ ∼ 1025 after just t ∼ 10s. This


number of events would allow for an experimentally detectable relative
response of order ∆ ∼ 10−23 (assuming 0.1% detector efficiency), which in
turn implies that the experiment could detect nonlocality scales ln . 10−25


m, many orders of magnitude better than the resolution of the LHC!!


Note: 20
11Na is just one example. There are more than a dozen nuclear


species that provide a reliable source of spontaneous emission of gamma
rays which may turn out to be better suited to concrete experimental
setups...






