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What is CDT?


Non-discrete lattice approach to quantum gravity J. Ambjorn et al.
(1998), hep-th/9805108.


Locally flat n-dimensional simplices form simplicial approximation to
manifold (Regge calculus)


Causality condition: distinguishes between space-like and time-like
links on the lattice


Explicit foliation of the lattice into space-like hypersurfaces of fixed
topology


Triangulations summed and weighted by Einstein-Hilbert action
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Causal dynamical triangulations (CDT) cont...


Continuum version


Z =


∫
D[g ]e iSEH , (1)


SEH =
1


16πGN


∫
d4x
√
g(−R + 2Λ), (2)


Discrete version


ZE =
∑


T


1


CT
e−SE . (3)


SRegge
E = − (κ0 + 6∆)N0 + κ4 (N4,1 + N3,2) + ∆ (2N4,1 + N3,2) (4)


N0≡ Number of vertices. Two types of simplex: N4,1 and N3,2


κ0 and κ4 related to bare gravitational and cosmological constants,
respectively


∆ characterises the asymmetry between space and time-like links
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Does CDT possess a continuum limit?


Nonperturbative quantum gravity via asymptotic safety


Requires UVFP - which would appear as second order critical point
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Divergent correlation length of UVFP - take a→ 0 while keeping
observables fixed in physical units


Important to reliably determine lattice spacing in CDT, and how it
changes in parameter space...
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Updated phase diagram
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Method 1: Fluctuations about de Sitter space


In phase C distribution of 3-volume as function of time has an expectation value that closely


matches Euclidean de Sitter space (Tuni = πs0


(
N


(4,1)
4


)1/4
)


〈N3 (t)〉 =
3


4


N
3/4


(4,1)


s0
cos3


 t


s0N
1/4


(4,1)


 . (5)


Quantum fluctuations δN3(t) ≡ N3(t)− 〈N3(t)〉 around de Sitter space consistent with
effective action (Γ depends on amplitude of quantum fluctuations)


Seff =
1


Γ


∑
t



(


N3(t + 1)− N3(t)
)2


N3(t + 1) + N3(t)
+ µN3(t)1/3 − λN3(t)


 , (6)
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Method 1: Fluctuations about de Sitter space


Seek continuum expressions to compare with CDT parametrisations...


Assume phase C represents a universe described by Euclidean de Sitter space with
superimposed quantum fluctuations for a spatially isotropic and homogeneous metric


The E-H action for this metric becomes a minisuperspace (MS) action which can be


parametrised by a spatial volume observable V3(τ) = 2π2a3(τ) via


SMS =
1


24πG


∫
dτ
√


gττ


(
gττ (∂τV3(τ))2


V3(τ)
+ µ̃V3(τ)1/3 − λ̃V3(τ)


)
, (7)


For the MS action the semiclassical spatial volume profile is given by


〈V3 (τ)〉 = 2π2R3cos3
(√


gττ τ


R


)
=


3


4


V4


s̃0V
1/4
4


cos3


(√
gττ τ


s̃0V
1/4
4


)
, (8)


where V4 = 8π2R4/3 is the volume of the 4-sphere and R its radius. s̃0 = 3/(8π2)1/4.


Comparison via dimensional analysis yields l2
P ≡ G ∝ Γa2


abs


Proportionality factor derived in J. Ambjorn et al. (2009),
hep-th/0807.4481. �
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Method 2: Rescaling of the spectral dimension


What is the spectral dimension?


The spectral dimension DS defines the effective dimension of a
fractal geometry via a diffusion process


DS is related to the probability of return, Pr (σ), for a random walk
over an ensemble of triangulations after σ diffusion steps


In asymptotically flat space the spectral dimension is defined via


DS = −2
d log〈Pr (σ)〉


d logσ
(9)�� ��Calculate DS (σ) (distance scale ∝ number of diffusion steps)
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Method 2: Rescaling of the spectral dimension


Moving toward the C-A transition we notice that the curves flatten
out
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Implies as one increases κ0 lattice spacing a decreases: → takes a
greater number of steps σ before the same dimension is obtained


Rescale diffusion time σ by factor a2
rel to obtain “best overlap”


(DS (σ) = a− b
c+σ/a2


rel
)�� ��arel proportional to change in lattice spacing
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Method 2: Rescaling of the spectral dimension


0 100 200 300 400 500
Σ1.0


1.5


2.0


2.5


3.0


3.5


4.0


DS
Κ0=2.2, D=0.6, N4,1=160k


Κ0=3.6, D=0.6, N4,1=160k


Κ0=4.4, D=0.6, N4,1=160k


Κ0=4.67, D=0.6, N4,1=300k


Κ0=4.64, D=0.5, N4,1=300k


Κ0=4.62, D=0.4, N4,1=300k


Κ0=4.57, D=0.3, N4,1=300k


Κ0=4.53, D=0.2, N4,1=300k
100 200 300 400 500


Σ


1.5


2.0


2.5


3.0


3.5


4.0


4.5


DS
Κ0=2.2, D=0.6


Κ0=3.6, D=0.6


Κ0=4.4, D=0.6


Κ0=4.67, D=0.6


Κ0=4.64, D=0.5


Κ0=4.62, D=0.4


Κ0=4.57, D=0.3


Κ0=4.53, D=0.2


0.77 0.78 0.79 0.80 0.81 arel


0.082


0.084


0.086


0.088


0.090


0.092


S







CDT intro Motivation Method Results Summary


Maximise κ0 to take continuum limit...?


(κ0,∆) arel aabs (a) aabs (b) aabs (c)


(2.20, 0.6) 1 1 1 1


(3.60, 0.6) 0.791± 0.008 0.74± 0.01 0.80± 0.01 0.76± 0.01


(4.40, 0.6) 0.336± 0.006 0.54± 0.01 0.62± 0.02 0.56± 0.01


(4.67, 0.6) 0.116± 0.001 0.31± 0.03 0.37± 0.04 0.32± 0.03


(4.64, 0.5) 0.134± 0.001 0.34± 0.03 0.40± 0.04 0.35± 0.03


(4.62, 0.4) 0.118± 0.003 0.33± 0.02 0.40± 0.03 0.34± 0.02


(4.57, 0.3) 0.122± 0.001 0.34± 0.02 0.41± 0.03 0.35± 0.02


(4.53, 0.2) 0.122± 0.001 0.36± 0.02 0.43± 0.02 0.37± 0.02
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Outlook and summary


Outlook


Some valid issues raised by Cooperman that need addressing (see
arXiv:1604.01798)


Important to determine order of new C-D transition... stay tuned!


Summary


Calculated change in lattice spacing using 2 independent methods
for 8 different points in parameter space


So what have we learned from our search for a continuum limit?


That maximising κ0 in phase C may be an important
piece of the puzzle...


�� ��Thank you!
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