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Inflationary account for the seeds of cosmic structure and their
imprint in the CMB is extremely successful however the
expectation that the scalar modes will be accompanied by
similarly generated tensor modes, has so far yielded no positive
results. People are using this as a means to constrain the
inflationary models.


Looking at a series of conceptual difficulties in the standard
scenario we have been led to a different approach. As it turns
out it leads to a rather different expectation for the tensor modes
while it gives very similar expectations for the scalar ones.


The point is that from this perspective one has no right to
use the ( at present levels ) non-observation ( at present
levels ) of tensor modes to constrain the inflationary
models !!.







The usual treatment is based on quantum treatment of
perturbations Ψ, δφ and hij (using v = a(δφ+ φ̇0


HΨ)).
Then computes 〈φ̂(x)φ̂(y)〉 (for various fields) ( in the B-D
vacuum state ) and takes them to represent the primordial
inhomogeneities which evolved into all the structure in our
Universe.


THE THEORY FITS VERY WELL WITH THE OBSERVATIONS.


However, let us consider the following: The analysis starts with
a H&I region, (both in the part that could be described at the
“classical level", and the quantum level) that grows into our
causal Universe. We end up with a situation which is not H&I :
It contains the primordial inhomogeneities which will result in
our Universe’s structure, and the conditions that permit our own
existence.


How does this happen if the dynamics of the closed system
does not break those symmetries?







Issue is recognized by various authors:
T. Padmanabhan ( in Section 10.4, page 364 of “ Structure
Formation in the Universe", indicates that one must work with
certain classical objects mimicking the quantum fluctuations,
and that this is not easy to do and to justify). Also in S.
Weinberg page 476 “Cosmology", S. Weinberg we find “... the
field configurations must become locked into one of an
ensemble of classical configurations with ensemble averages
given by quantum expectation values... It is not apparent just
how this happens....", while V. Mukhanov page 348 of “Physical
Foundations of Cosmology", clearly acknowledges that the
problem is not resolved simply by invoking decoherence: “ ..
However decoherence is not enough to explain the breakdown
of translational invariance.." and states that one might have to
rely on something like the Many Worlds Interpretation.


In fact the issue can be related to one considered by N.F.Mott in
1929. I.e. α decay and the “measurement problem", but, in an
aggravated form ( no observers in the early universe !!).







Moreover, in the standard treatment both the metric and the
field backgrounds are treated classically and both the metric
and inflaton field perturbations are quantized.
However, it is not completely clear that quantizing the metric
perturbation is the correct thing to do.
Even if one agrees that gravitation itself is quantum mechanical
in nature, that does not mean that the metric degrees of
freedom are the ones that need to be treated quantum
mechanically.
Various arguments suggest that space-time geometry might
emerge from deeper, non-geometrical degrees of freedom;
and, just as one does not directly quantize, say, the heat
equation, it might be incorrect to quantize the metric.
Furthermore Canonical quantization leads to timeless theories.
The recovery of fully covariant spacetime notions is nontrivial.
Often it is only achieved in an approximated sense when
passing to a semiclassical treatment.
Perhaps it is OK to quantize just the the perturbations of metric
but , then again it might not.







OUR APPROACH: The situation we face here is unique
(Quantum + Gravity (GR) + Observations).
Need to point to a physical process that occurs in time as
explaining the emergence of the seeds of structure. After all,
emergence (in this context) means : Something that was not
there at a certain time is there at a later time.
We need to explain the breakdown of the symmetry of the initial
state: Collapse can do this.


Collapse Theories: There is important existing work in this
direction ( GRW, Pearle, Diosi, Penrose, etc) but in this talk,
and for simplicity, we will NOT use any of those.


We consider adding, to the standard inflationary paradigm, a
quantum collapse of the wave function as a self-induced
instantaneous process.







The starting point will be the semi-classical Einstein’s equation,


Rµν − (1/2)gµνR = 8πG〈T̂µν〉, (1)


which treats gravitation classically and all other fields quantum
mechanically.


We assume such a framework to be a valid approximation at
the regime under consideration, which lies well after the full
quantum gravity regime has been left behind.


To this, we add an explicitly collapse in the quantum state of
matter fields. Non-trivial because while the collapse occur, the
semiclassical equation breaks down.


( We have formalized a treatment incorporating this in proposal
known as SSC ) (JCAP. 045, 1207, (2012) arXiv:1108.4928
[gr-qc]).







Take the standard inflationary account, the state of the universe
before the time at which the seeds of structure emerge is given
by the homogeneous and isotropic Bunch-Davies vacuum and
the homogeneous and isotropic classical FRW spacetime.


However, as the state of the matter field undergoes a
spontaneous and stochastic quantum collapse into a new state,
which need not share these symmetries.


After the collapse, the semiclassical Einstein equation is again
assumed to hold and, since 〈T̂µν〉 for the new state may not
have the symmetries of the pre-collapse state, we are led to a
geometry that, generically, will no longer be homogeneous and
isotropic.







SPECIFIC TREATMENT:


As we said, space-time is thus treated in classical language,
and in our case (working in a specific gauge) the metric is:


ds2 = a2(η){−(1 + 2Ψ)dη2 + [(1− 2Ψ)δij + hij ]dx idx j},


In the practical approach, the field is split φ = φ0 + δφ: The
homogeneous scalar background φ0(η) and a perturbation δ̂φ
to be treated with QFT. In the previous, more precise treatment,
the former corresponds to a specific mode (or combination) of
the quantum field.


During Inflation (slow roll regime), we will have a(η) ≈ ( −1
HIη


)1+ε.


Set atoday = 1, and end of inflation at η = η0 ( negative and very
small in absolute terms).







The perturbations of the scalar field lead to perturbations of the
energy-momentum tensor, which, through the semiclassical
Einstein equation, impact on the metric. At lowest order, this
leads to the following equation for the Newtonian potential


∇2Ψ = 4πGφ̇0〈δφ̇〉, (2)


where we have made use of the specific form of the scale
factor during inflation in the slow role regime.
The Fourier components of Ψ are given by


Ψ̃(η, ~k) = −k24πGφ̇0〈π̂~k (η)〉 (3)


This expression then exhibits the fact that unless the quantum
state differs from the initial vacuum, the Newtonian Potential
vanishes.







That is 〈0|δ̂φk (η)|0〉 = 0 and 〈0|π̂k (η)|0〉 = 0 .
The collapse will modify the state and, thus, the expectation
values of the operators δ̂φk (η) and π̂k (η). Consider the rules of
how the “collapse happens" THE SIMPLEST, MOST NAIVE
SCHEME:
Single Instantaneous collapse (per mode) to a new state |Θ〉.
Just after the collapse, the expectation value of the momentum
operator (or/and the field operator) in each mode is related to
the uncertainties of the pre-collapse state.
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where ηc
k is the time of collapse for each mode.


The x1,2
~k


are numbers selected randomly from a Gaussian
distribution centered at 0 and with unit dispersion. Our Universe
corresponds to a single realization of these random variables.







The prediction for the observable quantities is recovered from
consideration of a formal random walk obtained in
reconstructing the full Ψ(η, ~x) and from it the coefficients on the
sky of its spherical harmonic decomposition. The analysis
follows the standard treatment except for the fact that one
needs to evaluate the ensemble average (rather than the
quantum two-point function) over the states resulting from the
collapse:


〈δπ̂~k (η)〉〈δπ̂~k ′(η)〉. (4)


This result for scalar power spectrum ( including modifications
from the post reheating regime) agrees with the usual estimate
for the scalar perturbation power spectrum.
Similarly, the equation of motion for the tensor perturbations is


(∂2
0 −∇2)hij + 2(ȧ/a)ḣij = 16πG〈(∂iδφ)(∂jδφ)〉tr−tr (5)


where the superscript tr − tr stands for the transverse
traceless part of the expression.







Note that, even though both ( the renormalized values for) 〈δφ̇〉
and 〈(∂iδφ)(∂jδφ)〉 vanish when evaluated in the vacuum, they
will become non-vanishing in the quantum state of the field that
results from the spontaneous collapse.


The expressions above show the basic difference, within this
scheme, between the scalar and tensor metric perturbations.
While the former are seeded by linear terms in perturbations of
the scalar field, the latter are seeded by quadratic terms in such
perturbations.
This difference, represents a radical departure from the
standard approach, with crucial consequences: as long as we
are in a regime where perturbation theory makes sense, the
second term will be much smaller than the first.







In fact, the expression for the Fourier components h̃ij(~k) is now
obtained by solving the evolution non- homogeneous
differential equation, with zero initial data


¨̃hij(~k , η) + 2(ȧ/a) ˙̃hij(~k , η) + k2h̃ij(~k , η) = Sij(~k , η) (6)


with zero initial data and sourced by


Sij(~k , η) = 16πG
∫


d3kei~k~x〈∂iδφ(η, ~x)∂jδφ(η, ~x)〉tr−tr . (7)


One must use the renormalized expression and evaluate it in
the post-collapse state. This is done using the field and
momentum conjugate expectation values and the simplifying
assumption that the post-collapse state is a coherent state.







Focusing on a particular wave polarization and direction (
h12(kx̂3, η) and dropping the indices) the solution of the above
equation can be written explicitly as:


h̃(~k , η) = −if +(k , η)


∫
f−(k , η′)S(~k , η′)


H2η′2
dη′


+if−(k , η)


∫
f +(k , η′)S(~k , η′)


H2η′2
dη′


(8)


where


f±(k , η) =
H√
2k


(η ± i
k


)e±ikη (9)







Putting all this together, we obtain an expression for h12(kx̂3, η)
that depends on the random numbers characterizing the post-
collapse state.
Averaging over the random numbers, one is led to an
expression that characterizes the Power spectrum for the
tensor modes, in terms of:


S12(kẑ, η)S12(k ′ẑ, η) = δ(k−k ′)
8G2H4


(2π)10


∫
d3p


p2
1p2


2
p3(p + q)3 (10)


This is formally divergent, however we must introduce a cut-off
(the last scale exiting the horizon during inflation:
aend−inf pUV/2π = HI , or more realistically the scale of diffusion
dumping). The dominant term in the expression is then


S12(kẑ, η)S12(k ′ẑ, η) = δ(k − k ′)cG2H4PUV . (11)


Thus the prediction for the power spectrum of tensor
perturbations is:


P2
h (k) ∼ (1/k3)(V/M4


Pl)
2(PUV/k) (12)


substantially smaller than the standard prediction for P2
h (k).


Look at very large scales !!







Note that, even if one quantizes also the metric perturbations,
the current approach leaves room for predictions for r that differ
dramatically from those of the standard accounts.
The point is that, in order for actual inhomogeneities to emerge
from the uncertainties in the state of the quantum fields, one
needs some physical process capable of breaking symmetries
of quantum states (such as the Bunch-Davies vacuum).
That is the spontaneous collapse of the quantum state, (as
described by some of the dynamical reduction theories) and, in
the present context, it is far from clear that such process would
affect in the same fashion the matter fields and the geometrical
variables.


In fact, it is quite possible to consider schemes where matter
fields, would undergo collapse with one rate, and metric
perturbations would do so with a different one, or even
schemes where the metric perturbations, although quantized,
do not undergo spontaneous collapse by themselves.







In conclusion the use of bounds on the detection of B-modes in
the polarization of the CMB, to constrain or rule out inflationary
models is based on a very particular theoretical framework
which, despite its popularity, is far from unique, and which,
moreover, contains a serious shortcoming, as it cannot really
account for the emergence of primordial inhomogeneities.


THANK YOU






