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Coarse-graining of spin networks


[Livine 13][Rovelli et al. 15][Livine, Charles 16][Dittrich, Geiller 16]


2 Coarse-graining of spin networks in terms of density matrices:
→ change of the dual triangulation


⇒ Identification of coarser and finer degrees of freedom → H = Hc ⊗Hf


⇒ Tracing over the finer degrees of freedom


ρc
(
{gc}; {g̃c}


)
=


∫
G


dgfρf
(
{gf}, {gc}; {gf}, {g̃c}


)
2 Example: Pachner move 3→ 1


P3→1 : 7→


2 Violation of the Gauß constraint
(curvature induced torsion [Dittrich, Geiller 15])
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Graphs on punctured manifolds


[Konig, Kuperberg, Reichardt 10][Hu et al. 15][Lan, Wen 15][Dittrich, Geiller 15]


2 Spin network basis is not stable under coarse-graining


⇒ Add defects d.o.f ⇒ new basis


2 Graphs embedded on punctured surfaces


→ open edges = torsion d.o.f


→ non-contractible loops = curvature d.o.f


2 Example: 2-punctured sphere Σ2


equivalence−−−−−−−→
maps


⇔ = ψΣ2


G,H


2 Constraints violations = excitations (w.r.t BF vacuum)
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Gluing of manifolds ⇒ Drinfeld double


[Hu et al. 15][Lan, Wen 15][Dittrich, Geiller 15]


2 Gluing of two 2-punctured spheres


= identification + gauge averaging + imposition of flatness =


ψΣ2


G′,H′ ? ψ
Σ2


G,H = δ((G′)−1H ′G′, H)ψΣ2


G′G,H′


⇒ Reproduces the Drinfeld double multiplication


⇒ ψΣ2


G,H ↔ Drinfeld double element


2 Decomposition into irreducible representations
[Koornwinder el al. 98-99][Dijkgraaf et al. 90][Buerschaper el al. 09,13]


ψΣ2


G,H =
∑
ρ


∑
I′,I


ψΣ2


ρ,I′I


√
dρD


ρ
I′,I([G,H])


with ρ = C,R (C: conjugacy class, R: representation of the stabilizer)


2 ψΣ2


ρ,I′I ↔ point-particle with mass C and spin R [Noui 06][Noui, Perez 09]
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Fusion basis


2 {ψΣ2


ρ,I′,I} forms an orthonormal and complete set of states for Σ2


⇒ Fusion basis states for Σ2


2 3-punctured sphere:


ψΣ3


{G,H} =


2 Fusion basis states obtained by imposing the fusion rules between the
representations:
[Koornwinder el al. 98-99][Dijkgraaf et al. 90]


ψΣ3


{ρ,I′,I} = Cρ1ρ2ρ3I1I2I′3
ψΣ2


ρ1,I′1,I1
⊗ ψΣ2


ρ2,I′2,I2


2 Basis for n-punctured sphere is deduced by pants
decomposition
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Ribbon operators


[Hu et al. 15][Lan, Wen 15][Dittrich, Geiller 16][CD, Dittrich 16]


2 Configuration space: holonomies that describe locally flat connections


2 Two kinds of operators:


→ Wilson operators Wγ [G]


→ Translation operators Tk[H] (exponentiated fluxes)


2 Kitaev ribbon operators on Σ2: R[G,H] = W321[G] ◦ T4,3[H]
[Kitaev 06]


⇒ Action on the vacuum state (BF):


(R[G,H]ψΣ2
0 ) = = = ψΣ2


G,H


2 Ribbon operators generate excitations
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Coarse-graining w/ the fusion basis


2 Coarse-graining of fusion basis states in terms of density matrices:
→ merging of defects


⇒ Fusion of the corresponding irreducible representations


→


⇒ Definition of the fusion basis state on Σ3


2 Stability of the states under coarse-graining


2 Control the behavior of the states at all ‘scales’ at
once (MERA style [Vidal 10])
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Conclusion


2 Summary:


⇒ New basis with emphasis on the excitations


⇒ Kitaev’s ribbon operators generate excitations


⇒ Stability under coarse-graining


2 Future directions:


⇒ Generalization of the fusion basis to the 4D case
(lifting of the ribbon operators [CD, Dittrich 16])


⇒ Homogeneous curvature phase
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