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INTRODUCTION

o What are quasinormal modes?
o What can they tell us about a spacetime?

o What can one say about specific spacetimes?
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INTRODUCTION

“...we may expect that any intial perturbation will, during its last stages,
decay in a manner characteristic of the black hole itself and independent
of the cause. In other words, we may expect that during these last
stages, the black hole emits gravitational waves with frequencies and
rates of damping that are characteristic of the black hole itself, in the
manner of a bell sounding its last dying notes.”

Chandrasekhar, 1982
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INTRODUCTION

o Black holes settle down to equilibrium by producing radiation at fixed
(complex) frequencies: quasinormal ringdown

Frequencies are characteristic of the spacetime, carry geometric information

Recently there has been a lot of work by mathematicians to understand this
phenomenon

o Literature on quasinormal modes is large: | will focus only on a portion
o See [Kokkotas-Schmidt '99; Konoplya—Zhidenko '11]

Restrict attention to A # 0
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SCHWARZSCHILD DE SITTER

r=20 ot st

Schwarzschild de Sitter
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Schwarzschild de Sitter
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SCHWARZSCHILD DE SITTER

r=20 ot st

Solve Einstein’s equations with initial data given on 3.
What does O observe at late times?
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SCHWARZSCHILD DE SITTER

r=20 ot st

Solve linearised Einstein’s equations with initial data given on X.
What does O observe at late times?
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SCHWARZSCHILD DE SITTER

r=20 ot st

Solve O = 0 with initial data given on X.
What does O observe at late times?

GR21, JuLy ‘16



=1
=
—
o

%
G
s
RS
I_I
I
SRR
i)
l_l
o %
£a) =
= —~
H 2T_o..L
—

N |
o) nm_ =
A [
a Ny
m |
a8 I
O S
N
N
o'

z
oo
O
[@p)]



USUAL DEFINITION

@ Separate variables:

U(t,1,0,0) = e Yim (0, o) Ra(r)
satisfies [y = 0 iff:
2

—WRSZ—F [52—1—%] Ry =0, —00 < Ty < 00

@ The potential V; decays exponentially as |r.| — co.

@ Seek a solution satisfying outgoing boundary conditions:

e 5" Ty — 00
R ~ ST -
e’ Ty — —00

@ Such solutions only occur for a discrete set of s € {2z < 0}, the quasinormal
frequencies.
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COMMENTS

Expect 7 at late times to decompose as a sum of quasinormal modes

Difficult in practice to set exponentially decaying branch to zero.

Looks like an eigenvalue problem, but it isn't!

@ Relies on separability of wave equation.
o Not always possible, particularly for AdS black holes.

Can make rigorous, but requires an analytic continuation argument:
somewhat mysterious!
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SCHWARZSCHILD DE SITTER

r=20 ot st

Region of interest
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SCHWARZSCHILD DE SITTER

Pick a surface ¥y and push forward by the timelike
isometry to give a foliation {X;},>0
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SCHWARZSCHILD DE SITTER

cf hyperboloidal foliations in AF context
[LeFloch, Friedrich, Donninger, ...]
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SEMIGROUPS AND QNM

e For k € N, we define a Hilbert space:

/ (Z aiwof + 3 a%plf) ds < oo}
Z \ i<k i<k—1

H*(®) = {(¢07¢1) : 22 = C?
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SEMIGROUPS AND QNM

e For k € N, we define a Hilbert space:

/ (Z aiwof + 3 a%plf) ds < oo}
Z \ i<k i<k—1

o Evolution under the wave equation defines a map S[r] : H*(X) — H¥(X) by:

S[r](vo, ¥1) = (¢, 0:9) |5

where 1) is the solution of:

D’IZJZO, ¢|Eo :d)()v 87'1/}‘20 :¢1-

H*(®) = {(¢07¢1) : 22 = C?
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SEMIGROUPS AND QNM

e For k € N, we define a Hilbert space:

/ (Z aiwof + 3 a%plf) ds < oo}
Z \ i<k i<k—1

o Evolution under the wave equation defines a map S[r] : H*(X) — H¥(X) by:

S[r](vo, ¥1) = (¢, 0:9) |5

where 1) is the solution of:

D’IZJZO, ¢|Eo :d)()v 67'1/}‘20 :¢1-

H*(®) = {(¢o,w1) : 22 = C?

o S[7] defines a semigroup on H*(X), which can be written:
S[r]=e™*

for an unbounded operator A called the generator.
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SEMIGROUPS AND QNM

THEOREM (VASY ’'10; WARNICK ’'13; GANNOT '16)

For any non-extremal stationary de Sitter or anti de Sitter black hole, A has a
pure point spectrum Ay, in the half-plane s > —« (k — %) where s is the
surface gravity. There are countably many eigenvalues, which do not accumulate

at any point.

o Get a representation formula for solutions:

W(t) = / T (A—2) " Wodz

No need to separate variables or perform analytic continuation

Same methods immediately apply to Dirac, Maxwell, grav. perturbations etc.

@ In the case of AdS black holes, boundary conditions are required at .#.

@ Proof crucially makes use of redshift effect [Dafermos—Rodnianski '05]
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SPECTRAL GAPS AND EXPANSIONS

We can try and shift the contour in the representation formula above.

o If this is possible, get an asymptotic expansion: for some a; € C

w(x’ 7_) _ Z ai’ui(I)GSiT +0 (67117')

si€EANRs; >—v

o Fundamental obstruction to shifting the contour: trapped null geodesics.

Provided trapping is normally hyperbolic (e.g. photon sphere), can shift the
contour. [Vasy '10; Dyatlov '14]

Get a strip near imaginary axis containing only finitely many QNF
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SPECTRAL GAPS AND EXPANSIONS
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SPECTRAL GAPS AND EXPANSIONS
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INCOMPLETENESS OF THE QUASINORMAL SPECTRUM

o Since the spectrum is discrete, might hope that any (smooth) solution can be
expanded in QNM:

(z,T) L Zaiui(:r)esﬁ, a; €C
i=1

@ This is not true.

On a black hole background, there exist non-trivial solutions of the wave equation
which vanish in a neighbourhood of v ™.

@ Such a solution has a quasinormal expansion which is identically zero.

e Construction similar to backwards scattering construction of
[Dafermos—Holzegel-Rodnianski '13; Dafermos—Rodnianski-Shlapentokh-Rothman '14]
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INCOMPLETENESS OF THE QUASINORMAL SPECTRUM

r=20 ot st

Specify data on %, U ¢, vanishing near .*.

Solve wave equation backwards
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INCOMPLETENESS OF THE QUASINORMAL SPECTRUM

r=20 ot st

Solution induces data on ¥ which evolve into a solution
vanishing near T,
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SCHWARZSCHILD / KERR—ANTI-DE SITTER

r=0 ot

Schwarzschild—anti-de Sitter
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SCHWARZSCHILD / KERR—ANTI-DE SITTER

r=0 ot

Schwarzschild—anti-de Sitter
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SCHWARZSCHILD / KERR—ANTI-DE SITTER

g=—(1-2 4+ ) d? + 4+ %0

2m r2
1=+
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SCHWARZSCHILD / KERR—ANTI-DE SITTER

e Wave and Klein-Gordon equations on Schwarzschild/Kerr—Anti-de Sitter
studied in [Holzegel '10; Holzegel-Smulevici '11; Holzegel-Warnick '14; Dold '15; Gannot '12, '14,
'16]

@ Stable trapping near .# results in very slow decay:

1
log T

@ Slow decay manifests in quasinormal spectrum approaching the imaginary
axis exponentially quickly
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SCHWARZSCHILD / KERR—ANTI-DE SITTER

Rs

Schwarzschild—anti-de Sitter
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SCHWARZSCHILD / KERR—DE SITTER

o Waves on Schwarzschild/Kerr—de Sitter studied in [Ss Baretto-Zworski '97;
Dafermos—Rodnianski '07; Bony—Haffner '08; Vasy '13; Dyatlov '10, '11, '14; Hintz—Vasy '14, '15, '16]

@ Trapping is normally hyperbolic
@ Finitely many QNF in the region —v < Rs for some v > 0.

@ For |3s| > 1, QNF located close to lattice obtained by WKB approximation.
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SCHWARZSCHILD / KERR—DE SITTER
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SCHWARZSCHILD /KERR—DE SITTER STABILITY

o For linearised gravitational perturbations about Schwarzschild—de Sitter,
o all QNM with Rs > 0, Is # 0 are pure gauge.

o all QNM with s = 0 correspond to linearised Kerr solutions.

@ Conclude that linear perturbations of Schwarzschild—de Sitter decay
exponentially to a linearised Kerr solution.

THEOREM (HINTZ-VASY ’16)

The stationary region of a slowly rotating Kerr—de Sitter spacetime is nonlinearly
stable as a solution of the vacuum Einstein equations (A > 0).
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CONCLUSION

@ For black holes with A # 0, quasinormal modes can be defined in a
mathematically satisfactory way as solutions of an eigenvalue problem

@ Quasinormal modes do not form a complete basis

e Many numerical and heuristic results concerning specific black hole
spacetimes can be put on a rigorous footing

@ Understanding quasinormal modes is a key ingredient in recent stability
results for Kerr—de Sitter.
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