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The dispersion relation and the geometry of spacetime in GR
The dispersion relation of a free point particle in general relativity


E2 � p¸p˛‹
¸˛ = E2 � ~p2 = m2


• m is the invariant mass parameter
• E = g(γ,p) is the energy of to the particle
• pα = g(eα,p) is the spatial momentum of to the particle


an observer on worldline γ associates to the particle with 4-momentum p
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The dispersion relation and the geometry of spacetime in GR
The dispersion relation of a free point particle in general relativity


E2 � p¸p˛‹
¸˛ = E2 � ~p2 = m2


• m is the invariant mass parameter
• E = g(γ,p) is the energy of to the particle
• pα = g(eα,p) is the spatial momentum of to the particle


an observer on worldline γ associates to the particle with 4-momentum p


Covariant: The dispersion relation is a level set of a Hamilton function


H(x; p) = gab(x)papb = m2







The covariant dispersion relation demonstrates
• its intimidate relation to the geometry of spacetime, i.e. the metric g
• the geometry of spacetime is derived from


second derivatives of H w.r.t. the momenta p of particles
• particle worldlines are determined by Hamiltons equations of motion
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The dispersion relation and the geometry of spacetime in GR
Planck scale modified dispersion relation of a free point particle


• What is the underlying spacetime geometry?
• Higher orders in E and p cannot yield metric spacetime geometry
• Relation between the particles 4-momentum p and E, p?


E2 � ~p2 = m2 ! E2 � ~p2 + ‘f (E; ~p) + ::: = m2


~


Doubly Special Relativity[Amelino-Camelia 2008], Relative locality [Amelino-Camelia, Freidel, Kowalski Gilkman, Smolin 2011]


~
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The dispersion relation and the geometry of spacetime in GR
Planck scale modified dispersion relation of a free point particle


• What is the underlying spacetime geometry?
• Higher orders in E and p cannot yield metric spacetime geometry
• Relation between the particles 4-momentum p and E, p?


Idea: Start from covariant dispersion relation!


Covariant: The dispersion relation is a level set of a Hamilton function


H(x; p) = gab(x)papb + ‘Gabc(x)papbpc + ‘2Habcd(x)papbpcpd + ::: = m2


~


E2 � ~p2 = m2 ! E2 � ~p2 + ‘f (E; ~p) + ::: = m2
Doubly Special Relativity[Amelino-Camelia 2008], Relative locality [Amelino-Camelia, Freidel, Kowalski Gilkman, Smolin 2011]


~







The covariant dispersion relation encodes
• the geometry of spacetime, in the tensors g, G, H, …
• the geometry of spacetime is derived from


second (and higher) derivatives of H w.r.t. the momenta p of particles
• particle worldlines are determined by Hamiltons equations of motion
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The dispersion relation and the geometry of spacetime in GR
Planck scale modified dispersion relation of a free point particle


• What is the underlying spacetime geometry?
• Higher orders in E and p cannot yield metric spacetime geometry
• Relation between the particles 4-momentum p and E, p?


Idea: Start from covariant dispersion relation!


Covariant: The dispersion relation is a level set of a Hamilton function


H(x; p) = gab(x)papb + ‘Gabc(x)papbpc + ‘2Habcd(x)papbpcpd + ::: = m2


~


E2 � ~p2 = m2 ! E2 � ~p2 + ‘f (E; ~p) + ::: = m2
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Metric spacetime geometry:
• fundamental tupel ( M, g(x) )


spacetime with metric
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Hamilton Geometry
Hamilton phase space geometry


• fundamental tupel ( T*M, H(x,p) )
cotangent bundle with 
Hamiltonian


x


Spacetime M
Momentum Space T ⇤


x


M


⌦ = padx
a = (x; p)







Metric spacetime geometry:
• fundamental tupel ( M, g(x) )


spacetime with metric
• the lifted Levi-Civita connection 


pΓ determines the geometry of 
phase space
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Hamilton Geometry
Hamilton phase space geometry


• fundamental tupel ( T*M, H(x,p) )
cotangent bundle with Hamiltonian


• the Cartan non-linear connection 
N determines the geometry of 
phase space
Nab = 1
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Hamilton phase space geometry
• fundamental tupel ( T*M, H(x,p) )


cotangent bundle with Hamiltonian
• the Cartan non-linear connection N 


determines the geometry of phase space
• the spacetime connection and its 


curvature determine the 
geometry of spacetime
�‹abc = 1
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Metric spacetime geometry:
• fundamental tupel ( M, g(x) )


spacetime with metric
• the lifted Levi-Civita connection pΓ 


determines the geometry of phase space
• the Levi-Civita connection and 


the Riemann curvature determine 
the geometry of spacetime
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Hamilton Geometry







Metric spacetime geometry:
• fundamental tupel ( M, g(x) )


spacetime with metric
• the lifted Levi-Civita connection pΓ 


determines the geometry of phase space
• the Levi-Civita connection and the Riemann 


curvature determine the geometry of spacetime
• the momentum space connection 


and its curvature vanish, 
momentum space is flat
Cbc


a = 0


Hamilton phase space geometry
• fundamental tupel ( T*M, H(x,p) )


cotangent bundle with Hamiltonian
• the Cartan non-linear connection N 


determines the geometry of phase space
• the spacetime connection and its curvature 


determine the geometry of spacetime
• the momentum space connection 


and its curvature determine the 
geometry of momentum space
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Hamilton Geometry
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(x; p0)


(x; p)


Momentum Space T ⇤
x


M


Spacetime M


Qa
bcd(x; p) = 0







Metric spacetime geometry:
• fundamental tupel ( M, g(x) )


spacetime with metric
• the lifted Levi-Civita connection pΓ 


determines the geometry of phase space
• the Levi-Civita connection and the Riemann 


curvature determine the geometry of spacetime
• the momentum space connection and its 


curvature vanish, momentum space is flat
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Hamilton Geometry
Hamilton phase space geometry


• fundamental tupel ( T*M, H(x,p) )
cotangent bundle with Hamiltonian


• the Cartan non-linear connection N 
determines the geometry of phase space


• the spacetime connection and its curvature 
determine the geometry of spacetime


• the momentum space connection and its 
curvature determine the geometry of momentum 
space


[L. Barcaroli, L. Brunkhorst, G. Gubitosi, N. Loret, CP 2015]
The geometry of a first order modified dispersion relation 


H = gab(x)papb + ‘Gabc(x)papbpc


Nab(x; p) = ��qabpq + ‘ 34pqpr (raG
qr


b +rbG
qr


a � g sqrsG
r
ab) +O(‘2)


�‹abc(x; p) = �abc + ‘ 23pqg
ad(rdGbc
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q) +O(‘2)


Cbc
a(x; p) = ‘ 32G


ab
c +O(‘2) :







Metric spacetime geometry:
• fundamental tupel ( M, g(x) )


spacetime with metric
• the lifted Levi-Civita connection pΓ 


determines the geometry of phase space
• the Levi-Civita connection and the Riemann 


curvature determine the geometry of spacetime
• the momentum space connection and its 


curvature vanish, momentum space is flat
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Hamilton Geometry
Hamilton phase space geometry


• fundamental tupel ( T*M, H(x,p) )
cotangent bundle with Hamiltonian


• the Cartan non-linear connection N 
determines the geometry of phase space


• the spacetime connection and its curvature 
determine the geometry of spacetime


• the momentum space connection and its 
curvature determine the geometry of momentum 
space


The geometry of a first order modified dispersion relation
H = gab(x)papb + ‘Gabc(x)papbpc


Nab(x; p) = ��qabpq + ‘ 34pqpr (raG
qr


b +rbG
qr


a � g sqrsG
r
ab) +O(‘2)


�‹abc(x; p) = �abc + ‘ 23pqg
ad(rdGbc


q �rbGcd
q �rcGbd


q) +O(‘2)


Cbc
a(x; p) = ‘ 32G


ab
c +O(‘2) :


The geometry of phase space is determined by three distinguished objects
• the Cartan non-linear connection
• the spacetime connection and its curvature
• the momentum space connection and its cuvature
all derived canonically from a Hamiltonian/disp. relation on phase space.
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Geometric interpretation of Hamilton equations of motion


In terms of the non-linear connection Nab


ṗa + Nab@̄
bH = �[@a � Nab@̄


b]H = �‹aH; ẋa = @̄aH :


Autoparallels of the non-linear connection satisfy


ṗa + Nab@̄
bH = 0:


Theorem: [L. Barcaroli, L. Brunkhorst, G. Gubitosi, N. Loret, CP 2015]


For homogeneous Hamiltonians H(x,s p) = sr H(x,p)
solutions to the Hamilton equations of motion are autoparallels:


the source term vanishes 
‹aH = 0


Point particle follow solutions of Hamilton equations of motion


ṗa + @aH = 0; ẋa = @̄aH


In terms of the non-linear connection Nab


They can be compared to the autoparallels of the geometry


In general point particles are not freely-falling but subject to a force term
‹aH = 0
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Summary


Dispersion relations are level sets of Hamilton functions on phase space.


The geometry of phase space is determined by three distinguished objects
• the Cartan non-linear connection
• the spacetime connection and its curvature
• the momentum space connection and its cuvature


The spacetime and momentum space geometry is phase space 
dependent, i.e. depend on positions x and momenta p.
An only x dependent geometry of spacetime and only p dependent 
geometry of momentum space is very special.
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Summary


Dispersion relations are level sets of Hamilton functions on phase space.


The geometry of phase space is determined by three distinguished objects
• the Cartan non-linear connection
• the spacetime connection and its curvature
• the momentum space connection and its cuvature


The geometric framework of Hamilton geometry allows a precise 
geometric comparison between general relativity and the geometry of 


spacetime induced by general (modified) dispersion relations.


The spacetime and momentum space geometry is phase space 
dependent, i.e. depend on positions x and momenta p.
An only x dependent geometry of spacetime and only p dependent 
geometry of momentum space is very special.
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Outlook - Hamilton Geometry


Phys. Rev. D 92 (2015) 8, 084053; arXiv:1507.00922:
Hamilton geometry: Phase space geometry from modified dispersion relations


Quantum gravity phenomenology:
• Geometric understanding of (modified) addition of momenta
• Geometric definition of observers, and transformations between them
• Study modified dispersion relation in homogeneous and isotropic, 


spherically symmetric or axially symmetric spacetime geometries


Applications to the analysis of PDEs:
• Dispersion relations are local representations of PDEs
• Geometric description of propagation of field modes. 


Example: Propagation of light in general linear electrodynamics, for 
example in media


H(x; p) = Gabcd(x)papbpcpd


Dispersion relations are level sets of Hamilton functions:
 They determine the geometry of spacetime and momentum space.







Thank you for your attention
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