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Self-force
Gravitational self-force is described by the MiSaTaQuWa equation  
Mino, Sasaki, Tanaka (96); Quinn, Wald (96)
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Scalar self-force is described by the Quinn equation  
Quinn (00)
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The Green’s function is central to understanding and describing self-
force effects
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- x is field point; x’ is source/base point; G is a biscalar/bitensor
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Green’s functions
What are the advantages of using Green’s functions?


• Compute only once for every source


• Nearly all physical quantities of interest are calculated via 
convolution integrals


• Arbitrary motion for self-force Wardell, CRG et al (14)


• Geometric interpretation Zenginoglu & CRG (12), Wardell, CRG et al (14)


• Higher-order self-force


• Self-consistent (higher-order) self-forced evolution


• Self-consistent inspiral waveforms


• Arguably straightforward to implement once known







(show movie) 
Credit: B. Wardell
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Numerical Green’s functions are globally valid approximations but 
utilizing analytic approximations at early and late times is extremely 
helpful for self-force calculations  
- Quasi-local expansions Ottewill & Wardell (08); Wardell’s thesis  
- Pade approximants Casals et al (09)  
- Method of matched expansions Anderson & Wiseman (05); Casals et al (13)
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Numerical Green’s functions are globally valid approximations but 
utilizing analytic approximations at early and late times is extremely 
helpful for self-force calculations  
- Quasi-local expansions Ottewill & Wardell (08); Wardell’s thesis  
- Pade approximants Casals et al (09)  
- Method of matched expansions Anderson & Wiseman (05); Casals et al (13)


When these analytical approximations (e.g., in Schwarzschild) are 
available we use numerical Green’s functions for intermediate times
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Surrogate models for gravitational waveforms have been built 
successfully for:
• Non-spinning Effective One-Body (EOBNRv2) 


Field, CRG, et al PRX (14)
• Spin-aligned Effective One-Body (SEOBNRv2) 


Purrer (15)
• Non-spinning Numerical Relativity (SpEC) 


Blackman, Field, CRG et al PRL (15)
• 4d precession, Numerical Relativity (SpEC) (see J. Blackman’s talk) 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However, some steps for building a Green’s function surrogate 
are necessarily different than for waveforms
• Provides one with dynamics, field content, and waveforms
• Source and field points are time-dependent for worldline 


convolutions


• Tidal Effective One-Body (see S. Bernuzzi’s talk)  
(in prep)
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- Reduce known features by analytically time-shifting each series by light 
travel time from source point to field point, t ! t� |r⇤ � r0⇤|


- In addition, to reduce high-frequency noise we introduce a smoothing 
factor Wardell, CRG et al (14)
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Can find a linear approximation space that is nearly optimal


Set of functions "Training space"


3) Orthogonalization to get basis vector e2
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Less than 1% of the data is 
needed to capture all features 


up to numerical round-off errors
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2) Empirical interpolation
RB approximation:


Find the interpolation nodes through 
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3) Parametric fitting — r*= constant
Mostly interested in computing Green’s function on worldlines for self-force
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Static self-force
Analytically derived and found to be zero Wiseman (00)







Self-force on circular geodesics


Accepted or “truth” values computed in Diaz-Rivera et al (04)
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store to disk all data at 
each Tj…
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Surrogate accuracy, speed-up, and size
Eccentric geodesic orbit (e = 0.5, p = 7.2)


PDE ~380s


Surrogate ~25s


Speed-up* ~15x


* PDE in C++ 
  Surrogate in Python


Physical memory:  30GB reduced to 2GB







Surrogate self-force evaluation


t


- Method of matched expansions  
  Anderson & Wiseman (05); Casals et al (13)  
- Quasi-local expansions  
  Ottewill & Wardell (08); Wardell’s thesis 
- Pade approximants Casals et al (09)
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Preliminary


Applications
• Higher-order self-force and radiation CRG (12a, 12b)
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• Higher-order, self-consistent evolutions
• Self-consistent field/waveform and at higher orders
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• Many similar applications in gravity plus others (e.g., NS-BH inspirals)


• Studying and visualizing basic wave propagation in black hole 
spacetimes


• Comparing errors in osculating orbits and self-consistent evolutions 
(via two derivatives of the Green’s function)  Pound (unpublished)
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Summary & Outlook
• Green’s function methods have many advantages to offer but 


significant challenges to overcome to be practical


• Reduced-order surrogate modeling offers a promising way to use 
Green’s functions efficiently and accurately for self-force calculations


• Extending to Kerr spacetime is straightforward but may involve (much?) 
larger data sets because of extra parameters and reduced symmetry


• How to compute Green’s function for gravitational perturbations?  
- Lorenz gauge has unstable non-radiative modes…  
- Accuracy and speed of “metric” reconstruction from curvature scalars?


• For a generic worldline, the surrogate is more than 15x faster to 
evaluate than solving the wave equation, with little loss of accuracy


• For r* = constant worldlines, the surrogate is more than 750x faster to 
evaluate than solving the wave equation and ~150x smaller data
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Improving the surrogate building strategy


• Amplitude and phase representation of real-valued oscillating data via 
Hilbert transform 
- “Rippling” is a problem 
- Phase at initial times is difficult to estimate 
- Total basis sizes are often larger


• Some other way to represent the data?


The plateau in the max projection errors often hints that a 
different representation of the data may generate a more 
compact basis







Different and useful ways to parametrize the data?


• A more “natural” parametrization might be             and regard           as 
the physical dimension
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Different and useful ways to parametrize the data?


• A more “natural” parametrization might be             and regard           as 
the physical dimension


� = r0⇤ (t, r⇤)


• There are some hints that including mode number may provide 
significant data reduction but not yet known how to evaluate surrogate
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Different and useful ways to parametrize the data?


• A more “natural” parametrization might be             and regard           as 
the physical dimension


� = r0⇤ (t, r⇤)


• There are some hints that including mode number may provide 
significant data reduction but not yet known how to evaluate surrogate


Maybe try “invasive” approaches that project the wave equation 
onto the small vector space spanned by the basis
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