
Chad_Galley_-_Galley_GR21.pdf

Chad Galley, California Institute of Technology

Fast and accurate evaluation of black hole Green’s
functions using surrogate models

with Barry Wardell (University College Dublin)

GR21, New York City, July 11, 2016

Compact binaries
Numerical relativity has proven success approximating compact
binary evolutions

• Very good for mass ratios up to ~1/10

• Challenging for much smaller mass ratios

Compact binaries
Numerical relativity has proven success approximating compact
binary evolutions

• Very good for mass ratios up to ~1/10

• Challenging for much smaller mass ratios

Complementary description provided by self-force framework where
mass ratio is an expansion parameter for perturbation theory

• Very good for mass ratios up to ~1/10

• Challenging for comparable mass ratios

Compact binaries
Numerical relativity has proven success approximating compact
binary evolutions

• Very good for mass ratios up to ~1/10

• Challenging for much smaller mass ratios

Complementary description provided by self-force framework where
mass ratio is an expansion parameter for perturbation theory

• Very good for mass ratios up to ~1/10

• Challenging for comparable mass ratios

q

1 ⇠ 10

NR Self-force

M

m

Self-force is like  
radiation reaction  

but history-dependent

What is self-force?

Self-force is like  
radiation reaction  

but history-dependent

What is self-force?

Self-force is like  
radiation reaction  

but history-dependent

What is self-force?

Self-force is like  
radiation reaction  

but history-dependent

What is self-force?

Self-force is like  
radiation reaction  

but history-dependent

What is self-force?

Self-force is like  
radiation reaction  

but history-dependent

What is self-force?

Self-force is like  
radiation reaction  

but history-dependent

What is self-force?

Self-force is like  
radiation reaction  

but history-dependent

What is self-force?

Self-force is like  
radiation reaction  

but history-dependent

What is self-force?

Self-force
Gravitational self-force is described by the MiSaTaQuWa equation  
Mino, Sasaki, Tanaka (96); Quinn, Wald (96)

aµ =
m

2
Pµ⌫↵� lim

✏!0+

Z ⌧�✏

�1
d⌧ 0 r⌫G

ret
↵��0�0(z

µ(⌧), zµ
0
(⌧ 0))u�0

u�0

Self-force
Gravitational self-force is described by the MiSaTaQuWa equation  
Mino, Sasaki, Tanaka (96); Quinn, Wald (96)

aµ =
m

2
Pµ⌫↵� lim

✏!0+

Z ⌧�✏

�1
d⌧ 0 r⌫G

ret
↵��0�0(z

µ(⌧), zµ
0
(⌧ 0))u�0

u�0

Scalar self-force is described by the Quinn equation  
Quinn (00)

aµ =
q2

12⇡m
Pµ⌫ Da⌫

d⌧
+

q2

m
Pµ⌫ lim

✏!0+

Z ⌧�✏

�1
d⌧ 0 (aµ + Pµ⌫r⌫)G

ret(zµ(⌧), zµ
0
(⌧ 0))

Self-force
Gravitational self-force is described by the MiSaTaQuWa equation  
Mino, Sasaki, Tanaka (96); Quinn, Wald (96)

aµ =
m

2
Pµ⌫↵� lim

✏!0+

Z ⌧�✏

�1
d⌧ 0 r⌫G

ret
↵��0�0(z

µ(⌧), zµ
0
(⌧ 0))u�0

u�0

Scalar self-force is described by the Quinn equation  
Quinn (00)

aµ =
q2

12⇡m
Pµ⌫ Da⌫

d⌧
+

q2

m
Pµ⌫ lim

✏!0+

Z ⌧�✏

�1
d⌧ 0 (aµ + Pµ⌫r⌫)G

ret(zµ(⌧), zµ
0
(⌧ 0))

The Green’s function is central to understanding and describing self-
force effects

⇤
x

G(x, x0) =
�

4(x� x

0)p
�g(x)

=) �(x) =

Z
d

4
x

0
p

�g(x0)G(x, x0)J(x0)

- x is field point; x’ is source/base point; G is a biscalar/bitensor

Green’s functions

Green’s functions
What are the advantages of using Green’s functions?

• Compute only once for every source

• Nearly all physical quantities of interest are calculated via
convolution integrals

• Arbitrary motion for self-force Wardell, CRG et al (14)

• Geometric interpretation Zenginoglu & CRG (12), Wardell, CRG et al (14)

• Higher-order self-force

• Self-consistent (higher-order) self-forced evolution

• Self-consistent inspiral waveforms

• Arguably straightforward to implement once known

(show movie) 
Credit: B. Wardell

Numerical Green’s functions
⇤

x

G(x, x0) =
�

4(x� x

0)p
�g(x)

�! Narrow Gaussian  
Zenginoglu & CRG (12)

Numerical Green’s functions
⇤

x

G(x, x0) =
�

4(x� x

0)p
�g(x)

�! Narrow Gaussian  
Zenginoglu & CRG (12)

Solve a (symmetry-reduced) homogeneous wave equation with
narrow Gaussian in initial data  
Wardell, CRG et al (14)

Numerical Green’s functions
⇤

x

G(x, x0) =
�

4(x� x

0)p
�g(x)

�! Narrow Gaussian  
Zenginoglu & CRG (12)

Solve a (symmetry-reduced) homogeneous wave equation with
narrow Gaussian in initial data  
Wardell, CRG et al (14)

Numerical Green’s functions are globally valid approximations but
utilizing analytic approximations at early and late times is extremely
helpful for self-force calculations  
- Quasi-local expansions Ottewill & Wardell (08); Wardell’s thesis  
- Pade approximants Casals et al (09)  
- Method of matched expansions Anderson & Wiseman (05); Casals et al (13)

Numerical Green’s functions
⇤

x

G(x, x0) =
�

4(x� x

0)p
�g(x)

�! Narrow Gaussian  
Zenginoglu & CRG (12)

Solve a (symmetry-reduced) homogeneous wave equation with
narrow Gaussian in initial data  
Wardell, CRG et al (14)

Numerical Green’s functions are globally valid approximations but
utilizing analytic approximations at early and late times is extremely
helpful for self-force calculations  
- Quasi-local expansions Ottewill & Wardell (08); Wardell’s thesis  
- Pade approximants Casals et al (09)  
- Method of matched expansions Anderson & Wiseman (05); Casals et al (13)

When these analytical approximations (e.g., in Schwarzschild) are
available we use numerical Green’s functions for intermediate times

What are the disadvantages of using Green’s functions?

• Numerically, computationally expensive
• Large data sets (G depends on two space-time points!)

• Analytically, very difficult to calculate in curved spacetimes  
Casals, Nolan (16)

What are the disadvantages of using Green’s functions?

• Numerically, computationally expensive
• Large data sets (G depends on two space-time points!)

Single mode ~300MB (~2 GB)

101 modes ~30GB (~200 GB)

Kerr ~(300MB)*10*10*104  

= 300 GB (~2TB)

Gravity ~3TB (~20TB)

• Analytically, very difficult to calculate in curved spacetimes  
Casals, Nolan (16)

What are the disadvantages of using Green’s functions?

• Numerically, computationally expensive
• Large data sets (G depends on two space-time points!)

Goal:

Find a way for Green’s functions to be efficient and accurate to use
for practical self-force and related computations.

Single mode ~300MB (~2 GB)

101 modes ~30GB (~200 GB)

Kerr ~(300MB)*10*10*104  

= 300 GB (~2TB)

Gravity ~3TB (~20TB)

• Analytically, very difficult to calculate in curved spacetimes  
Casals, Nolan (16)

The goal
To quickly predict accurate solutions to the Green’s function wave
equation that are otherwise too slow and too large for practical use

The goal
To quickly predict accurate solutions to the Green’s function wave
equation that are otherwise too slow and too large for practical use

The method
Use reduced-order modeling techniques to reduce large sets of pre-
computed Green’s function data to its essential components

The goal
To quickly predict accurate solutions to the Green’s function wave
equation that are otherwise too slow and too large for practical use

The method
Use reduced-order modeling techniques to reduce large sets of pre-
computed Green’s function data to its essential components

• Reduced basis (compression in source & field points)

• Empirical interpolation (compression in time)

• Fits to predict new Green’s function values
Field, CRG et al (14)

The goal
To quickly predict accurate solutions to the Green’s function wave
equation that are otherwise too slow and too large for practical use

The result
An accurate surrogate model to generate new Green’s function data
on demand

The method
Use reduced-order modeling techniques to reduce large sets of pre-
computed Green’s function data to its essential components

• Reduced basis (compression in source & field points)

• Empirical interpolation (compression in time)

• Fits to predict new Green’s function values
Field, CRG et al (14)

Surrogate models for gravitational waveforms have been built
successfully for:
• Non-spinning Effective One-Body (EOBNRv2) 

Field, CRG, et al PRX (14)
• Spin-aligned Effective One-Body (SEOBNRv2) 

Purrer (15)
• Non-spinning Numerical Relativity (SpEC) 

Blackman, Field, CRG et al PRL (15)
• 4d precession, Numerical Relativity (SpEC) (see J. Blackman’s talk) 

(in prep)

• Tidal Effective One-Body (see S. Bernuzzi’s talk)  
(in prep)

Surrogate models for gravitational waveforms have been built
successfully for:
• Non-spinning Effective One-Body (EOBNRv2) 

Field, CRG, et al PRX (14)
• Spin-aligned Effective One-Body (SEOBNRv2) 

Purrer (15)
• Non-spinning Numerical Relativity (SpEC) 

Blackman, Field, CRG et al PRL (15)
• 4d precession, Numerical Relativity (SpEC) (see J. Blackman’s talk) 

(in prep)

However, some steps for building a Green’s function surrogate
are necessarily different than for waveforms
• Provides one with dynamics, field content, and waveforms
• Source and field points are time-dependent for worldline

convolutions

• Tidal Effective One-Body (see S. Bernuzzi’s talk)  
(in prep)

Surrogate building: Initial stuff
- Coordinates: (t, r⇤, ✓,�)

see Wardell, CRG et al (14) 
for details of numerical  
implementation

Surrogate building: Initial stuff

- Mode decomposition means building a surrogate for each mode

G(x

↵
, x

0↵
) =

1

rr

0

1X

`=0

(2`+ 1)P`(cos ✓)G`(t� t

0
; r⇤, r

0
⇤)

- Coordinates: (t, r⇤, ✓,�)

see Wardell, CRG et al (14) 
for details of numerical  
implementation

Surrogate building: Initial stuff

- Mode decomposition means building a surrogate for each mode

G(x

↵
, x

0↵
) =

1

rr

0

1X

`=0

(2`+ 1)P`(cos ✓)G`(t� t

0
; r⇤, r

0
⇤)

- Coordinates: (t, r⇤, ✓,�)

- Treat radial coordinates of source
and field points as “parameters”
for the model

~� = (r⇤, r
0
⇤)

see Wardell, CRG et al (14) 
for details of numerical  
implementation

Surrogate building: Initial stuff

- Mode decomposition means building a surrogate for each mode

G(x

↵
, x

0↵
) =

1

rr

0

1X

`=0

(2`+ 1)P`(cos ✓)G`(t� t

0
; r⇤, r

0
⇤)

- Coordinates: (t, r⇤, ✓,�)

�t = 0.1M

�r⇤ = �r0⇤ = 0.1M

- Solutions stored to disk at
increments

- Treat radial coordinates of source
and field points as “parameters”
for the model

~� = (r⇤, r
0
⇤)

see Wardell, CRG et al (14) 
for details of numerical  
implementation

Surrogate building: Initial stuff

- Mode decomposition means building a surrogate for each mode

G(x

↵
, x

0↵
) =

1

rr

0

1X

`=0

(2`+ 1)P`(cos ✓)G`(t� t

0
; r⇤, r

0
⇤)

- Coordinates: (t, r⇤, ✓,�)

�t = 0.1M

�r⇤ = �r0⇤ = 0.1M

- Solutions stored to disk at
increments

- ~30GB saved to disk

- Treat radial coordinates of source
and field points as “parameters”
for the model

~� = (r⇤, r
0
⇤)

see Wardell, CRG et al (14) 
for details of numerical  
implementation

Surrogate building: Initial stuff

- Mode decomposition means building a surrogate for each mode

G(x

↵
, x

0↵
) =

1

rr

0

1X

`=0

(2`+ 1)P`(cos ✓)G`(t� t

0
; r⇤, r

0
⇤)

- Coordinates: (t, r⇤, ✓,�)

r0⇤

r⇤

4M 18M
4M

18M

t
200M

�t = 0.1M

�r⇤ = �r0⇤ = 0.1M

- Solutions stored to disk at
increments

- ~30GB saved to disk

- Treat radial coordinates of source
and field points as “parameters”
for the model

~� = (r⇤, r
0
⇤)

see Wardell, CRG et al (14) 
for details of numerical  
implementation

t

r⇤

G`=1

- Reduce known features by analytically time-shifting each series by light
travel time from source point to field point, t ! t� |r⇤ � r0⇤|

t

r⇤

G`=1

�!

t

r⇤

G`=1

- Reduce known features by analytically time-shifting each series by light
travel time from source point to field point, t ! t� |r⇤ � r0⇤|

t

r⇤

G`=1

�!

t

r⇤

G`=1

- Reduce known features by analytically time-shifting each series by light
travel time from source point to field point, t ! t� |r⇤ � r0⇤|

- In addition, to reduce high-frequency noise we introduce a smoothing
factor Wardell, CRG et al (14)

`
cut

= `
max

/5`
max

= 100

G(x

↵
, x

0↵
) ⇡ 1

rr

0

`
maxX

`=0

P`(cos ✓)(2`+ 1)e

�`2/2`2
cut

G`(t� t

0
; r⇤, r

0
⇤)

1) Reduced basis via greedy algorithm
Can find a linear approximation space that is nearly optimal

Set of functions

~� = (r⇤, r
0
⇤)

1) Reduced basis via greedy algorithm
Can find a linear approximation space that is nearly optimal

Set of functions "Training space"

~� = (r⇤, r
0
⇤)

1) Reduced basis via greedy algorithm
Can find a linear approximation space that is nearly optimal

Set of functions "Training space"

~� = (r⇤, r
0
⇤)

~µ1

e1

~�1

1) Choose any parameter,
e1 = G`(t;~�1), C1 = {e1}

1) Reduced basis via greedy algorithm
Can find a linear approximation space that is nearly optimal

Set of functions "Training space"

~� = (r⇤, r
0
⇤)

~µ1

e1

~�1

~�2

e2

1) Choose any parameter,
e1 = G`(t;~�1), C1 = {e1}

2) Greedy search - Find the parameter
 that maximizes:

max

t

��G`(t;~�)� P1[G`(t;~�)]
��, P1[·] = e1he1, ·i

1) Reduced basis via greedy algorithm
Can find a linear approximation space that is nearly optimal

Set of functions "Training space"

3) Orthogonalization to get basis vector e2

~� = (r⇤, r
0
⇤)

~µ1

e1

~�1

~�2

e2

1) Choose any parameter,
e1 = G`(t;~�1), C1 = {e1}

2) Greedy search - Find the parameter
 that maximizes:

max

t

��G`(t;~�)� P1[G`(t;~�)]
��, P1[·] = e1he1, ·i

Basis size grows nearly linearly
with mode number

Basis size grows nearly linearly
with mode number

Total compression factor:

C
total

= (`
max

+ 1)

`
maxX

`=0

1

C`

!�1

⇡ 151

Basis size grows nearly linearly
with mode number

Total compression factor:

C
total

= (`
max

+ 1)

`
maxX

`=0

1

C`

!�1

⇡ 151

Less than 1% of the data is
needed to capture all features

up to numerical round-off errors

Shifting by time-of-arrival

Not shifting by time-of-arrival

2) Empirical interpolation
RB approximation:

G`(t;~�) ⇡
NX̀

i=1

C`
i (~�)e

`
i(t)

Barrault+ (04) 
Maday+ (09)

r0⇤

r⇤

4M 18M
4M

18M

t
200M

2) Empirical interpolation
RB approximation:

G`(t;~�) ⇡
NX̀

i=1

C`
i (~�)e

`
i(t)

At n time subsamples of data,  
the coefficients can be solved

C`
i (~�) =

NX̀

j=1

�
V �1
`

�
ij
G`(Tj ;~�)

(V`)ij ⌘ ei(Tj)

Barrault+ (04) 
Maday+ (09)

r0⇤

r⇤

4M 18M
4M

18M

t
200M

2) Empirical interpolation
RB approximation:

G`(t;~�) ⇡
NX̀

i=1

C`
i (~�)e

`
i(t)

At n time subsamples of data,  
the coefficients can be solved

C`
i (~�) =

NX̀

j=1

�
V �1
`

�
ij
G`(Tj ;~�)

(V`)ij ⌘ ei(Tj)

G`(t;~�) ⇡
NX̀

j=1

B`
j(t)G`(Tj ;~�)

B`
j(t) ⌘

NX̀

i=1

e`i(t)
�
V �1
`

�
ij

Barrault+ (04) 
Maday+ (09)

r0⇤

r⇤

4M 18M
4M

18M

t
200M

2) Empirical interpolation
RB approximation:

Find the interpolation nodes through
another greedy algorithm that
minimizes the interpolation error

G`(t;~�) ⇡
NX̀

i=1

C`
i (~�)e

`
i(t)

At n time subsamples of data,  
the coefficients can be solved

C`
i (~�) =

NX̀

j=1

�
V �1
`

�
ij
G`(Tj ;~�)

(V`)ij ⌘ ei(Tj)

G`(t;~�) ⇡
NX̀

j=1

B`
j(t)G`(Tj ;~�)

B`
j(t) ⌘

NX̀

i=1

e`i(t)
�
V �1
`

�
ij

Barrault+ (04) 
Maday+ (09)

r0⇤

r⇤

4M 18M
4M

18M

t
200M

2) Empirical interpolation
RB approximation:

Find the interpolation nodes through
another greedy algorithm that
minimizes the interpolation error

G`(t;~�) ⇡
NX̀

i=1

C`
i (~�)e

`
i(t)

At n time subsamples of data,  
the coefficients can be solved

C`
i (~�) =

NX̀

j=1

�
V �1
`

�
ij
G`(Tj ;~�)

(V`)ij ⌘ ei(Tj)

G`(t;~�) ⇡
NX̀

j=1

B`
j(t)G`(Tj ;~�)

B`
j(t) ⌘

NX̀

i=1

e`i(t)
�
V �1
`

�
ij

Barrault+ (04) 
Maday+ (09)

r0⇤

r⇤

4M 18M
4M

18M

t
200M

3) Parametric fitting — r*= constant
Mostly interested in computing Green’s function on worldlines for self-force

r0⇤

r⇤

4M 18M
4M

t
200M

(r⇤, r
0
⇤ = r⇤)

3) Parametric fitting — r*= constant
Mostly interested in computing Green’s function on worldlines for self-force

r0⇤

r⇤

4M 18M
4M

t
200M

(r⇤, r
0
⇤ = r⇤)

The surrogate is simple to evaluate on
worldlines with = constant r⇤

- static worldlines 
- circular geodesics  
- accelerated circular worldlines

3) Parametric fitting — r*= constant
Mostly interested in computing Green’s function on worldlines for self-force

r0⇤

r⇤

4M 18M
4M

t
200M

(r⇤, r
0
⇤ = r⇤)

The surrogate is simple to evaluate on
worldlines with = constant r⇤

- static worldlines 
- circular geodesics  
- accelerated circular worldlines

GS
` (t; r⇤, r⇤) =

NX̀

j=1

B`
j(t)G

spline
` (Tj ; r⇤, r

0
⇤ = r⇤)

GS(x, x
0
) =

1

r

2

`
maxX

`=0

(2`+ 1)e

�`2/2`2
cut

⇥ P`(cos �(t))G
S
` (t; r⇤, r⇤)

3) Parametric fitting — r*= constant
Mostly interested in computing Green’s function on worldlines for self-force

r0⇤

r⇤

4M 18M
4M

t
200M

(r⇤, r
0
⇤ = r⇤)

The surrogate is simple to evaluate on
worldlines with = constant r⇤

- static worldlines 
- circular geodesics  
- accelerated circular worldlines

Total compression: 30GB /192MB = 156

Speed-up: 380s / 0.5s = 760x

GS
` (t; r⇤, r⇤) =

NX̀

j=1

B`
j(t)G

spline
` (Tj ; r⇤, r

0
⇤ = r⇤)

GS(x, x
0
) =

1

r

2

`
maxX

`=0

(2`+ 1)e

�`2/2`2
cut

⇥ P`(cos �(t))G
S
` (t; r⇤, r⇤)

Static self-force
Analytically derived and found to be zero Wiseman (00)

Self-force on circular geodesics

Accepted or “truth” values computed in Diaz-Rivera et al (04)

3) Parametric fitting — generic case

r0⇤

r⇤

4M 18M
4M

t
200M

More general worldlines

zµ(t) =
�
t, r(t),⇡/2, �(t)

�

destroy the affine nature  
of the model (i.e., separability)

As a result, fitting is done on-the-fly  
on a worldline

G`(t; r⇤(t), r
0
⇤) ⇡

NX̀

j=1

B`
j(t)G`(Tj ; r⇤(t), r

0
⇤)

3) Parametric fitting — generic case

r0⇤

r⇤

4M 18M
4M

t
200M

More general worldlines

zµ(t) =
�
t, r(t),⇡/2, �(t)

�

destroy the affine nature  
of the model (i.e., separability)

As a result, fitting is done on-the-fly  
on a worldline

G`(t; r⇤(t), r
0
⇤) ⇡

NX̀

j=1

B`
j(t)G`(Tj ; r⇤(t), r

0
⇤)

At a given time step, tk, reconstruct
the Green’s function data in a small
patch around the worldline

Fit with spline and interpolate to

Repeat for all time steps

r⇤(tk)

3) Parametric fitting — generic case

r0⇤

r⇤

4M 18M
4M

t
200M

More general worldlines

zµ(t) =
�
t, r(t),⇡/2, �(t)

�

destroy the affine nature  
of the model (i.e., separability)

As a result, fitting is done on-the-fly  
on a worldline

G`(t; r⇤(t), r
0
⇤) ⇡

NX̀

j=1

B`
j(t)G`(Tj ; r⇤(t), r

0
⇤)

At a given time step, tk, reconstruct
the Green’s function data in a small
patch around the worldline

Fit with spline and interpolate to

Repeat for all time steps

r⇤(tk)

�
r⇤(tk), r

0
⇤
�

3) Parametric fitting — generic case

r0⇤

r⇤

4M 18M
4M

t
200M

More general worldlines

zµ(t) =
�
t, r(t),⇡/2, �(t)

�

destroy the affine nature  
of the model (i.e., separability)

As a result, fitting is done on-the-fly  
on a worldline

G`(t; r⇤(t), r
0
⇤) ⇡

NX̀

j=1

B`
j(t)G`(Tj ; r⇤(t), r

0
⇤)

At a given time step, tk, reconstruct
the Green’s function data in a small
patch around the worldline

Fit with spline and interpolate to

Repeat for all time steps

r⇤(tk)

�
r⇤(tk), r

0
⇤
�

3) Parametric fitting — generic case

r0⇤

r⇤

4M 18M
4M

t
200M

More general worldlines

zµ(t) =
�
t, r(t),⇡/2, �(t)

�

destroy the affine nature  
of the model (i.e., separability)

As a result, fitting is done on-the-fly  
on a worldline

G`(t; r⇤(t), r
0
⇤) ⇡

NX̀

j=1

B`
j(t)G`(Tj ; r⇤(t), r

0
⇤)

At a given time step, tk, reconstruct
the Green’s function data in a small
patch around the worldline

Fit with spline and interpolate to

Repeat for all time steps

r⇤(tk)

�
r⇤(tk), r

0
⇤
�

Slower and need to
store to disk all data at
each Tj…

Surrogate accuracy, speed-up, and size
Eccentric geodesic orbit (e = 0.5, p = 7.2)

Surrogate accuracy, speed-up, and size
Eccentric geodesic orbit (e = 0.5, p = 7.2)

Surrogate accuracy, speed-up, and size
Eccentric geodesic orbit (e = 0.5, p = 7.2)

PDE ~380s

Surrogate ~25s

Speed-up* ~15x

* PDE in C++ 
 Surrogate in Python

Surrogate accuracy, speed-up, and size
Eccentric geodesic orbit (e = 0.5, p = 7.2)

PDE ~380s

Surrogate ~25s

Speed-up* ~15x

* PDE in C++ 
 Surrogate in Python

Physical memory: 30GB reduced to 2GB

Surrogate self-force evaluation

t

- Method of matched expansions  
 Anderson & Wiseman (05); Casals et al (13)  
- Quasi-local expansions  
 Ottewill & Wardell (08); Wardell’s thesis 
- Pade approximants Casals et al (09)

Eccentric geodesic orbit (e = 0.5, p = 7.2)

Gret(z
µ, zµ

0
)

⇡ ✓(⌧ � ⌧ql)Pade[Vql(z
µ, zµ

0
)]

+ ✓(⌧ql � ⌧)✓(⌧ � ⌧br)Gsurr(z
µ, zµ

0
)

+ ✓(⌧br � ⌧)Gbr(z
µ, zµ

0
)

Surrogate self-force evaluation

tt

Gtail

- Method of matched expansions  
 Anderson & Wiseman (05); Casals et al (13)  
- Quasi-local expansions  
 Ottewill & Wardell (08); Wardell’s thesis 
- Pade approximants Casals et al (09)

Eccentric geodesic orbit (e = 0.5, p = 7.2)

Gret(z
µ, zµ

0
)

⇡ ✓(⌧ � ⌧ql)Pade[Vql(z
µ, zµ

0
)]

+ ✓(⌧ql � ⌧)✓(⌧ � ⌧br)Gsurr(z
µ, zµ

0
)

+ ✓(⌧br � ⌧)Gbr(z
µ, zµ

0
)

Surrogate self-force evaluation

● ● ● ● ● ● ●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

● ● ● ●■ ■ ■ ■ ■ ■
■

■

■

■

■
■ ■

■

■

■

■
■ ■ ■ ■ ■ ■ ■ ■

Ft
Fr

3 4 5 6 7 8 9

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

χ

F μ

Eccentric geodesic orbit (e = 0.5, p = 7.2)

Preliminary

Applications
• Higher-order self-force and radiation CRG (12a, 12b)

maµ � Pµ⌫

✓
lim

✏!0+

Z ⌧�✏

�1
d⌧ 0 r⌫Gret(z

µ, zµ
0
)

◆✓
lim

✏!0+

Z ⌧�✏

�1
d⌧ 00 Gret(z

µ, zµ
00
)

◆
,

Pµ⌫ lim
✏!0+

Z ⌧�✏

�1
d⌧ 0 r⌫Gret(z

µ, zµ
0
) lim

✏!0+

Z ⌧ 0�✏

�1
d⌧ 00 Gret(z

µ0
, zµ

00
)

Applications
• Higher-order self-force and radiation CRG (12a, 12b)

maµ � Pµ⌫

✓
lim

✏!0+

Z ⌧�✏

�1
d⌧ 0 r⌫Gret(z

µ, zµ
0
)

◆✓
lim

✏!0+

Z ⌧�✏

�1
d⌧ 00 Gret(z

µ, zµ
00
)

◆
,

Pµ⌫ lim
✏!0+

Z ⌧�✏

�1
d⌧ 0 r⌫Gret(z

µ, zµ
0
) lim

✏!0+

Z ⌧ 0�✏

�1
d⌧ 00 Gret(z

µ0
, zµ

00
)

• Self-consistent evolution
d2zµ

d⌧2
+ �

µ
↵�

dz↵

d⌧

dz�

d⌧
⇡ q2Pµ⌫

Z ⌧

�1
d⌧ 0

⇢
✓(⌧ 0 � ⌧ql)Pade

⇥
r⌫Vql(z

µ, zµ
0
)

⇤

+ ✓(⌧ql � ⌧ 0)✓(⌧ 0 � ⌧br)r⌫Gsurr(z
µ, zµ

0
)

+ ✓(⌧br � ⌧ 0)Gbr(z
µ, zµ

0
)

�
+ local terms

Applications
• Higher-order self-force and radiation CRG (12a, 12b)

maµ � Pµ⌫

✓
lim

✏!0+

Z ⌧�✏

�1
d⌧ 0 r⌫Gret(z

µ, zµ
0
)

◆✓
lim

✏!0+

Z ⌧�✏

�1
d⌧ 00 Gret(z

µ, zµ
00
)

◆
,

Pµ⌫ lim
✏!0+

Z ⌧�✏

�1
d⌧ 0 r⌫Gret(z

µ, zµ
0
) lim

✏!0+

Z ⌧ 0�✏

�1
d⌧ 00 Gret(z

µ0
, zµ

00
)

• Higher-order, self-consistent evolutions

• Self-consistent evolution
d2zµ

d⌧2
+ �

µ
↵�

dz↵

d⌧

dz�

d⌧
⇡ q2Pµ⌫

Z ⌧

�1
d⌧ 0

⇢
✓(⌧ 0 � ⌧ql)Pade

⇥
r⌫Vql(z

µ, zµ
0
)

⇤

+ ✓(⌧ql � ⌧ 0)✓(⌧ 0 � ⌧br)r⌫Gsurr(z
µ, zµ

0
)

+ ✓(⌧br � ⌧ 0)Gbr(z
µ, zµ

0
)

�
+ local terms

Applications
• Higher-order self-force and radiation CRG (12a, 12b)

maµ � Pµ⌫

✓
lim

✏!0+

Z ⌧�✏

�1
d⌧ 0 r⌫Gret(z

µ, zµ
0
)

◆✓
lim

✏!0+

Z ⌧�✏

�1
d⌧ 00 Gret(z

µ, zµ
00
)

◆
,

Pµ⌫ lim
✏!0+

Z ⌧�✏

�1
d⌧ 0 r⌫Gret(z

µ, zµ
0
) lim

✏!0+

Z ⌧ 0�✏

�1
d⌧ 00 Gret(z

µ0
, zµ

00
)

• Higher-order, self-consistent evolutions
• Self-consistent field/waveform and at higher orders

�(x↵) = q

Z
⌧ret(x)

�1
d⌧

0
⇢
✓(⌧ 0 � ⌧br)Gsurr(x, z

µ

0
) + +✓(⌧br � ⌧

0)Gbr(x, z
µ

0
)

�

• Self-consistent evolution
d2zµ

d⌧2
+ �

µ
↵�

dz↵

d⌧

dz�

d⌧
⇡ q2Pµ⌫

Z ⌧

�1
d⌧ 0

⇢
✓(⌧ 0 � ⌧ql)Pade

⇥
r⌫Vql(z

µ, zµ
0
)

⇤

+ ✓(⌧ql � ⌧ 0)✓(⌧ 0 � ⌧br)r⌫Gsurr(z
µ, zµ

0
)

+ ✓(⌧br � ⌧ 0)Gbr(z
µ, zµ

0
)

�
+ local terms

• Many similar applications in gravity plus others (e.g., NS-BH inspirals)

• Studying and visualizing basic wave propagation in black hole
spacetimes

• Comparing errors in osculating orbits and self-consistent evolutions
(via two derivatives of the Green’s function) Pound (unpublished)

Fµ
hist(⌧) = q2Pµ⌫ lim

✏!0+

Z ⌧�✏

�1
d⌧ 0 r⌫Gret(z

µ, zµ
0
)

Summary & Outlook
• Green’s function methods have many advantages to offer but

significant challenges to overcome to be practical

• Reduced-order surrogate modeling offers a promising way to use
Green’s functions efficiently and accurately for self-force calculations

Summary & Outlook
• Green’s function methods have many advantages to offer but

significant challenges to overcome to be practical

• Reduced-order surrogate modeling offers a promising way to use
Green’s functions efficiently and accurately for self-force calculations

• For a generic worldline, the surrogate is more than 15x faster to
evaluate than solving the wave equation, with little loss of accuracy

• For r* = constant worldlines, the surrogate is more than 750x faster to
evaluate than solving the wave equation and ~150x smaller data

Summary & Outlook
• Green’s function methods have many advantages to offer but

significant challenges to overcome to be practical

• Reduced-order surrogate modeling offers a promising way to use
Green’s functions efficiently and accurately for self-force calculations

• Extending to Kerr spacetime is straightforward but may involve (much?)
larger data sets because of extra parameters and reduced symmetry

• How to compute Green’s function for gravitational perturbations?  
- Lorenz gauge has unstable non-radiative modes…  
- Accuracy and speed of “metric” reconstruction from curvature scalars?

• For a generic worldline, the surrogate is more than 15x faster to
evaluate than solving the wave equation, with little loss of accuracy

• For r* = constant worldlines, the surrogate is more than 750x faster to
evaluate than solving the wave equation and ~150x smaller data

Extra slides

Improving the surrogate building strategy
The plateau in the max projection errors often hints that a
different representation of the data may generate a more
compact basis

Improving the surrogate building strategy

• Amplitude and phase representation of real-valued oscillating data via
Hilbert transform 
- “Rippling” is a problem 
- Phase at initial times is difficult to estimate 
- Total basis sizes are often larger

The plateau in the max projection errors often hints that a
different representation of the data may generate a more
compact basis

Improving the surrogate building strategy

• Amplitude and phase representation of real-valued oscillating data via
Hilbert transform 
- “Rippling” is a problem 
- Phase at initial times is difficult to estimate 
- Total basis sizes are often larger

• Some other way to represent the data?

The plateau in the max projection errors often hints that a
different representation of the data may generate a more
compact basis

Different and useful ways to parametrize the data?

• A more “natural” parametrization might be and regard as
the physical dimension

� = r0⇤ (t, r⇤)

G`(t, r⇤; r
0
⇤) ⇡

NX̀

i=1

B`
i (t, r⇤)G`(Ti, R⇤i; r

0
⇤)

Different and useful ways to parametrize the data?

• A more “natural” parametrization might be and regard as
the physical dimension

� = r0⇤ (t, r⇤)

G`(t, r⇤; r
0
⇤) ⇡

NX̀

i=1

B`
i (t, r⇤)G`(Ti, R⇤i; r

0
⇤)

Fµ ⇠ q2Pµ⌫
`
maxX

`=0

1

r0
(2`+ 1)e�`2/2`2

cut

Z
dt0 P`(cos �(t))

NX̀

i=1

B`
i (t, r⇤(t))G`(Ti, R⇤i; r

0
⇤)

Different and useful ways to parametrize the data?

• A more “natural” parametrization might be and regard as
the physical dimension

� = r0⇤ (t, r⇤)

G`(t, r⇤; r
0
⇤) ⇡

NX̀

i=1

B`
i (t, r⇤)G`(Ti, R⇤i; r

0
⇤)

Fµ ⇠ q2Pµ⌫
`
maxX

`=0

1

r0
(2`+ 1)e�`2/2`2

cut

Z
dt0 P`(cos �(t))

NX̀

i=1

B`
i (t, r⇤(t))G`(Ti, R⇤i; r

0
⇤)

= q2Pµ⌫
`
maxX

`=0

1

r0
(2`+ 1)e�`2/2`2

cut

NX̀

i=1

G`(Ti, R⇤i; r
0
⇤)

Z
dt0 P`(cos �(t))B

`
i (t, r⇤(t))

Different and useful ways to parametrize the data?

• A more “natural” parametrization might be and regard as
the physical dimension

� = r0⇤ (t, r⇤)

• There are some hints that including mode number may provide
significant data reduction but not yet known how to evaluate surrogate

G`(t, r⇤; r
0
⇤) ⇡

NX̀

i=1

B`
i (t, r⇤)G`(Ti, R⇤i; r

0
⇤)

Fµ ⇠ q2Pµ⌫
`
maxX

`=0

1

r0
(2`+ 1)e�`2/2`2

cut

Z
dt0 P`(cos �(t))

NX̀

i=1

B`
i (t, r⇤(t))G`(Ti, R⇤i; r

0
⇤)

= q2Pµ⌫
`
maxX

`=0

1

r0
(2`+ 1)e�`2/2`2

cut

NX̀

i=1

G`(Ti, R⇤i; r
0
⇤)

Z
dt0 P`(cos �(t))B

`
i (t, r⇤(t))

Different and useful ways to parametrize the data?

• A more “natural” parametrization might be and regard as
the physical dimension

� = r0⇤ (t, r⇤)

• There are some hints that including mode number may provide
significant data reduction but not yet known how to evaluate surrogate

Maybe try “invasive” approaches that project the wave equation
onto the small vector space spanned by the basis

G`(t, r⇤; r
0
⇤) ⇡

NX̀

i=1

B`
i (t, r⇤)G`(Ti, R⇤i; r

0
⇤)

Fµ ⇠ q2Pµ⌫
`
maxX

`=0

1

r0
(2`+ 1)e�`2/2`2

cut

Z
dt0 P`(cos �(t))

NX̀

i=1

B`
i (t, r⇤(t))G`(Ti, R⇤i; r

0
⇤)

= q2Pµ⌫
`
maxX

`=0

1

r0
(2`+ 1)e�`2/2`2

cut

NX̀

i=1

G`(Ti, R⇤i; r
0
⇤)

Z
dt0 P`(cos �(t))B

`
i (t, r⇤(t))

