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Why Symmetries?

D. Gaiotto, A. Kapustin, N. Seiberg, B Willet ’15
arXiv:1412.5148

Classify Operators
If unbroken classify states
If broken classify phases
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Symmetry Realization

Fabri-Picasso Theorem: Let |0〉 be a translationally invariant vacuum
and Q a generator of a symmetry U = e−iϑQ, then we have two
possibilities:

Q|0〉 = 0 and the vacuum is an eigenstate of Q with null
eigenvalue, so that |0〉 is invariant under U

@Q|0〉 in the Hilbert space. It formally has infinite norm.

[H,Q] = 0

Wigner-Weyl Realization:
Q|0〉 = 0
U|φ〉 → |φ′〉 with degenerate
energy

Nambu-Goldstone Realization:
|Q|0〉| = ∞
there is some X such that
〈0|[X,Q]|0〉 , 0
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Fate of SSB in Rindler Space

C. T. Hill ’85, Physics Letters
W. G. Unruh, N. Weiss ’84, Physical Review D

In (inertial) Thermal Field Theory a broken symmetry at zero
temperature usually is restored at a (finite) temperature, that is the
field undergoes a phase transition. Can the Unruh temperature also
induce a phase transition?

Consider λφ4 theory with spontaneous symmetry breaking. The
order parameter is the VEV 〈0M|φ|0M〉. Since the order parameter is a
scalar it must be the same in all reference frames. Therefore if it is
SSB in inertial quantization it must be also in Fulling’s.

4 / 12



Fate of SSB in Rindler Space

C. T. Hill ’85, Physics Letters
W. G. Unruh, N. Weiss ’84, Physical Review D

In (inertial) Thermal Field Theory a broken symmetry at zero
temperature usually is restored at a (finite) temperature, that is the
field undergoes a phase transition. Can the Unruh temperature also
induce a phase transition?

Consider λφ4 theory with spontaneous symmetry breaking. The
order parameter is the VEV 〈0M|φ|0M〉. Since the order parameter is a
scalar it must be the same in all reference frames. Therefore if it is
SSB in inertial quantization it must be also in Fulling’s.

4 / 12



On the Other Hand

T. Ohsaku ’04, Physics Letters B
P. Castorina, M. Finocchiaro ’12, arXiv:1207.3677

Ie f f = Iclass + quantum & thermal corrections

For λφ4 theory m2
→ m2 + δm2(λ, β), and symmetry restoration occurs

when ∂Ve f f

∂φ = 0. Through the magic of K-Bessel functions, for large a,
gives

m2 +
a2

4π4

λ
24

= 0⇒ Tc =

√
−24m2

λ
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What doesn’t work

For the NO restoration camp

No argument why the order parameter must be a scalar

No explanation behind the physical reasoning

For the YES restoration camp

The effective potential is a global property

SI = ı

∫
dx4√

−gλφ4 = ı

∫
dτdξdx2

⊥e2aξλφ4.
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What works: Algebra of Symmetries
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What works: SSB Case

Suppose [HM,QM] = 0 and there is XM such that
〈0M|[XM,QM]|0M〉 , 0,

〈0M|[XM,QM]|0M〉 = 〈0M|[XR
− XL,QR

−QL]|0M〉 , 0
= 〈0M|[XR,QR]|0M〉 + 〈0M|[XL,QL]|0M〉 , 0

Since the choice between Rindler and Left spaces is arbitrary

〈0M|[XM,QM]|0M〉 = 〈0M|[XR,QR]|0M〉+〈0M|[XL,QL]|0M〉 = 2〈0M|[XR,QR]|0M〉

〈0M|[XM,QM]|0M〉 , 0⇒ 〈0M|[XR,QR]|0M〉 , 0⇒ QR
|0M〉 , 0.

Result independent of the nature of the order parameter

Role of Temperature Gradient vs. Intrinsic relativistic property
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Unruh Effect: Probe Statement

A field in the Minkowski vacuum coupled to a uniformly
accelerated probe (a quantum mechanical point-like system)
will induce transitions between the internal states of the probe
so that asymptotically the rates of transition are those given by
detailed balance condition with Boltzmann factor.

Field Statement: Microcanonical Ensemble
Probe Statement: Canonical Ensemble

How about a extended probe with different phases?
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Extended Probe: Definition and Mean Field

S =

∫
d4x
√
−g

[(
∆E
2
σz δ

(3)(x − x(τ))
u0(τ)

)
+

(
gσx δ

(3)(x − x(τ))
u0(τ)

φ(x)
)
− Lφ

]
,

H =
∆E
2u0 σ

z +
g
u0 σ

x
∑

k

1
√

2ωkV
(c†keiu0kz/a + cke−iu0kz/a) +

∑
k

ωkc†kck.

To study phase transition we must understand the long time behaviour of

H =
∑
<i, j>

J
2u0 σ

z
i σ

z
j +

∑
i

g
u0 σ

x
i

∑
k
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2ωkV
(c†keiu0kz/a + cke−iu0kz/a) +

∑
k
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∆E(〈σ〉, J)
2u0 σz

i +
g
u0 σ

x
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k

1
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2ωkV
(c†keiu0kz/a + cke−iu0kz/a)

 +
∑

k

ωkc†kck.

Fermi’s Golden Rule suggests thermalization for J sufficiently small

We need to evaluate directly the dynamics of this Hamiltonian
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Conclusions

An accelerated observer will never witness the restoration
of a field symmetry that is spontaneously broken in the
inertial frame
There remains the question of the physical process behind
SSB in the Rindler space
We’re currently investigating the related question of a
accelerated probe with different phases coupled to a field
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SSB in Free Theory

W. Israel ’76, Physics Letters

G = ı
∑
ωk⊥

θω(a†ωk⊥
ã†ωk⊥
− aωk⊥ ãωk⊥ )

where θω = arctan(e−πω/a). This kind of transformation is know as
Two-Mode Squeeze Operator

As in NG realization we have [H,G] = 0 but G|0R〉 , 0.

U = e−iG, U|0R〉 = |0M〉, but remember that |0R〉 and |0M〉 are not in the
same Hilbert space
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