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of Clasgow Glasgow speedmeter - proof of principle

The Glasgow speedmeter experiment is an ERC
funded project with three major goals:

Create an ultra-low noise speed meter testbed

which is dominated by quantum radiation pressure
noise

Demonstrate the reduced back-action noise of the
Sagnac topology

Explore speedmeter technology for future GW
detectors
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o Glasgow Sensitivity Goall

About 3x better guantum noise limited
 Sipenon thamalnoise | sensitivity between 100Hz and 1kHz.
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* In-vacuum operation, passive multi-
stage seismic pre-isolation

« Triangular arm cavities with
monolithically suspended mirrors

« One gram input mirrors, 100g end
mirrors

* Approx. 4kW of intra-cavity power

« 2.8m cavity round trip length,
20ppm — 30ppm loss per round trip

 Large laser beam spots to reduce
coating Brownian thermal noise

* In-vacuum suspended balanced
homodyne detector

Target displacement sensitivity: better
than 1018 m/sqrt(Hz) at 1kHz
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Conceptual approach

Sagnac Speed Meter
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o Glasgow Infrastructure

« Two GEO600-style vacuum chambers

 Four layer seismic isolation stack:
fluorel springs + 60kg stainless discs

« Custom-made circular optical
breadboards

« Stiffening with a truss structure, to
ensure rigid motion along the

longitudinal axis at low freqgencies
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[ e Optical layout

One gram input test Triangular arm cavities,
“masses . =~ - 2.83m round-trip length

In-vacuum balanced
homodyne detector
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Auxiliary suspension design complete
— Steering optics with coil/magnet actuators at upper mass
— Two pendulum stages, steel wires; no vertical stage

Arm cavity end mirror suspensions
— Triple pendulum stages with all-monolithic final stage
— Design based on AEI 10m SQL IFO suspensions
— ESD for fast actuation — tests underway

Small input mirror suspensions
— Monolithic multi-stage design
— Scaled down version of 100g suspensions

Main BS suspension

— Large substrate to get access to secondary
beams

— Limited space requires elegant support
structure
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gf%ﬁiggtWY Balanced homodyne readout

« DC readout won‘t work, need
external LO

« Selecting the right quadrature angle
IS essential
 Well established tool in bench-top

guantum optics experiments, less
So in suspended interferometers ...

* Investigated coupling of LO noise
to BHD signal and HOM
suppression
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gf%‘;igétwy Sensing and control

— Carrier Quantum Vacuum NoiseBudget
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Full details: arXiv:1603.07756 [gr-gc]
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E}I(ngiggwy Everything else...

= Too many things to cover here
Laser stabilisation (amplitude, frequency, mode-cleaning)

Modelling (effects of asymmetries from beamsplitter, arm
cavity power mismatch, etc)

Analysis of ring cavity mirror surface scattering (non-normal
incidence beams allow scatter back along the beam path —
mixing of CW and CCW beams, micro-roughness
measurement and analysis)

Environment monitoring (seismic, temperature, humidity, etc)
Digital control system (CDS) already being used for locking
Length and angular control studies 0
10 micron suspension fibres
Blade spring tests

Etc etc etc...
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E}ggesggtwy Polarisation Sagnac

a Simple first stage - proof of principle )
Characterise polarisation optics — thin film polarisers, QWP’s

Completely upgrade our vacuum and suspension system
Changing wavelength to 1550nm

\_ Begin with single arm test — inform full Sagnac later... -/

~<— carrier light, CCW mode
<< signal light, CCW mode
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Danilishin Phys. Rev. D 69, 102003 (2004)
ng et al. Phys. Rev. D 87, 096008 (2013)
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§f Unwersity System upgrade

of Glasgow
€ Major reconfiguration of our system: A
Removed all the suspensions and infrastructure from inside the
vacuum system and replaced them with new designs.
\ Redesigned for flexibility and ease of operation. )
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o o Cllnseto ty Early days...

[t
€ Putting it all together h
Suspensions built, controlled and in place
8 1550nm laser stabilisation and amplification characterisation (now!)
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gj%g‘;%lgétwy Sloshing Sagnac

Sloshing Sagnac SM

© Sloshing cavity (AR-tuned) between the arms;
© Linear cavities & fits the ET layout;

© Reduced ETM reflectivity = 2.2 times lower
coating TN.
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[ Thanks for listening! J
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