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Motivation

@ We want to represent very concentrated sources of matter/ energy
in gravity theories.

@ These model thin shells of matter, braneworlds, impulsive waves, ...

@ To treat properly these objects, one has to resort to theory of
distributions:

e The sums of distributions, the derivative of a distribution, and
the tensor product of a tensor field with a tensor distribution
are well defined.

o In general, the product of distributions is not well defined.

@ We will make use of a class of metrics that generate a distributional
curvature tensor, so that the field equations make sense.

e Smooth metrics, except on a localized hypersurface where they
are only continuous.

Israel (1966), Taub (1980), Clarke and Dray (1987), Mars and
Senovilla (1993)



Setting

Y=vtuv,yg)
V7.97) V*.9")
(3, h)
@ The (timelike) hypersurface ¥ splits V into V*.
@ 7i: (spacelike) unit normal vector to X. (n: normal one form)
€, basis of vectors tangent to X. (w®: dual basis)

@ In V* the metric g agrees with g% and it is smooth.

@ The metric g is only continuous across Y. The induced metric is
hag = gagls — nang, and V its associated covariant derivative.

@ The jump/discontinuity of f is denoted by
» . + . —
Vg e, () = lim f(z) = lim f~(x) .
vt v-
@ We define f|yg := (1/2)( lim f*(x)+ lim f~(z)).
T —q z _1 q

vt v



@ Metric: g=gT0+g (1-6), g=g"0+(1—-0)g .

@ Riemann tensor distribution

o — «@ >
DBy = R* ﬂuu9+R ﬂ/w(— Q)"‘Hﬁlw‘s’

H

(V. g")

(2, h)

Second fundamental form: r%, = eS¢ Ving, k3, =wiwhrd

Hapuw = na([”ﬁu] Ny — [”/31/] ”u) + nﬁ(["ﬁau] Ny — [“au] ny)




Concentrated sources in gravity: geometry

@ Metric: g=g"0+9¢g (1—-0), g=9¢g"0+(1—-6)g .

@ Riemann tensor distribution

« a %
Eﬂuy = B;uj 9 + R B;uj (7 Q) + H/B;,w 4 )

«a
H /3 jn%

Second fundamental form: &2, := eS¢ Ving, ri; =wiwhrk

At any point x € 3 where the hypersurface is non-null, the neccessary
and sufficient condition for Hg,, to vanish is that kg is continuous
across the hypersurface.




Concentrated sources in gravity: geometry

From contractions of the Riemann tensor distribution

@ Ricci tensor distribution
Rg, =R, 0+ R 5, (1-0) + Hp, 6,

with singular part Hg, = H"; , = —[rp,] — [3]npn,.

@ Ricci scalar distribution
R=R"0+R™ (L-0)+HJ",
. . — g8 _ B
with singular part H = H"; = —2[rj].

H=0¢[x3]=0. |

@ Einstein tensor distribution
Gp, =G5 0+ G 5, (L—0) +Gpu 67,

with singular part G, = Hg, — %gBVH = —[rgy] — [KX]ngn,.



Concentrated sources in gravity: geometry

Some properties of the singular part of the Einstein tensor G,g:

Gpv = —[rkpy] + [ralhpw,

Tlﬁggu = 0

The Bianchi identities hold in the distributional sense Mars, Senovilla
(1993)
va(gaﬁ) =0.

This implies
/{ 'GP =nPn [Gg,], (normal)

v’ Gsu = —nPh?, [G,s]. (tangent)

These properties and results are independent of the field equations, and
therefore valid in GR, F(R), quadratic gravity,...
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General Relativity

Field equations in General Relativity in the distributional sense
Quﬁ = SWIa,B'
Hence the structure of the energy momentum tensor distribution must be
Top = T30+ Tog(L—0) + 7ap 6~

V=97 L O\t
% aff
/
(3,h)
Singular part of the Energy Momentum tensor distribution
Q 75 =0

@ Israel equations




Energy momentum tensor without singular terms

TaB = 0< [Iiab] =0.

@ Removes the singular part of the curvature tensor distribution.
@ Restricts the possible jumps, encoded in B,s = Bgq, with
n*Bag =0
[Rapuv] = Baunany, + Baungn, — Bayngn, — Bgunany,
[Rag] = Bfnang + Bag,
[R] = 2Bg,
[Gapl = Bap — Bhohag = n%[Gag] = 0.

In particular:

n® [Taﬂ] =0.
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Quadratic gravity

Theories of gravity arising from the Lagrangian density (k := 87G/c?):

1
L= ﬁ (R —2A + a1R2 + a2R,u,uRl“/ + QSRQ[S/LVRQB#V) + Ematter~

Field equations contain higher order derivatives:

G + Agas + G2y = kTap,

where Giﬁ encodes the part that comes from the quadratic terms:

Gl = 2{@RRas — 23R Rl + a5 Rapun Rs " + (a3 + 203) Ry R
— <a1 + %ag + ag) VaVaR + (;ag + 2a3) DRM;}

—%gag {(alR2 + ag R R" + agRyy ROM) — (4ay + a2) IR},

with O := g"*V,V,. Terms in blue involve products and those in red
derivatives of distributions.



The derivatives in GY act linearly in R and R,
VaoVsR, OR.g, gaplR,

but these imply derivatives of singular distributions: “6>"".
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The derivatives in GY act linearly in R and R,
VanR, DRag, gagDR,

but these imply derivatives of singular distributions: “6>"".

The following terms in GY involve products of singular distributions (e.g.
§%6%)

a1RRa.5, a1R?,
a3RaﬂRZ, a;;RaPuVRg ‘ij, ((12 + 2&3)RQM5VR“V, a2RM,,le, angw,,R”w”.

Product of (singular) distributions is not well defined. J
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Quadratic gravity

The following terms in G? involve products of singular distributions (e.g.
§%6%)
a1RRy5, a1R?,
agROé[LRgL) GJBRap;LVRﬁ p;w, (a2 + 2a3)Rapﬁl/Ruya a2R,u1/R#V7 a3Rp'y,uuRp’ﬂW~
We distinguish two cases depending on the theory of gravity:
@ a» = a3 = 0: This corresponds to f(R) = R+ 2A + a; R%.

[k&] = 0.

(03

Distributional scalar curvature without singular part, and with
[R] # 0 in general: R=RT0+ R~ (1 —0).

@ A generic case with as or ag # 0

[Iiag} = 0

Distributional curvature without singular part, and with

[Rapuv] # 0 in general: R =R, 0+R_, (1—0).

afuv afuv= afpuv



The curvature distributions and the field equations for quadratic gravity lead to

T, =Tho+T0(L—0)+ 76" + (2r(uny) + Tnuny)8” +t

E “prt

V=.97) V*,g%)
(3, h)
oT,", and T}, are the EM tensors in V* and V™. )
Appear in GR
o7, is the EM tensor on X.
o7, is the external flux momentum.
o7 is the external pressure. New!

ot is a double layer.

Found for the 1st time in quadratic F(R) theories. Senovilla (2013, 2014, 2015)
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Quadratic gravity

@ The energy momentum tensor on X
e For A = a3 = 0

ktap = —(1+42a1R|s)[kap] + 2a1(n”[V,Rlhap — [R]kapls)
o Otherwise
ko = —(2a1 + az + 2a3)[Rkas + (2&1 n %) PV yR]has

a
+2 (2(13 + ;) N[V )Ry |hi B,
This appears also on GR, but with a different expression.
@ The external flux momentum
kTo = —(2a1 + as + 2a3)Va[R] + 2 (2a3 1 %) 7P [V, Ryt b

Singular normal-tangent component in T,
It measures the energy flux/stress on 3.

it does not exist in GR.

v

@ External pressure
kt = (2a1+as +2a3)[R]K5+ (2a3 + %) (2n° [V, Ry n” —n’[V,R]).

This scalar does not exist in GR.
It accounts for the (normal) tension on X.



Double layer energy momentum tensor ¢, 5 with strength (i
It acts on test tensors as

k <;aﬁ,yaﬁ> —_ / Kpiosn®V Y P v
=

kltap = (2(11 + a2 + 2a3)[R]ha,3 + 2 (2a3 + a2 [Gaﬁ]
2

@ Absent in GR.
@ The distribution {5 has support on X, but we have to know the
extension of the test tensor Y°# off 3.
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Quadratic gravity

Double layer energy momentum tensor ¢, with strength pag
It acts on test tensors as

k:< aﬁ,Yaﬂ / EiasnV,Y *Pdv .

Kpias = (2a1 + az + 2a3)[Rlhas + 2 (2a3 + %) [Gas]

@ Absent in GR.
@ The distribution {5 has support on X, but we have to know the
extension of the test tensor Y off X.

@ It models a dipole distribution with strength pn3.
o In electrostatics, the Poisson equation for the potential ®
generated by a dipole-layer distribution with strength D
localized at some surface S reads

AD = —A, <Ag,f>=/DﬁﬁfdA.
S



Quadratic gravity

Double layer energy momentum tensor ¢, with strength pag
It acts on test tensors as

k <§aﬁ,Yaﬂ> = —/ EiasnV,Y *Pdv .
)

Kpias = (2a1 + az + 2a3)[Rlhas + 2 (2a3 + %) [Gas]

@ Absent in GR.
@ The distribution {5 has support on X, but we have to know the
extension of the test tensor Y off X.

@ It models a dipole distribution with strength fn3.

@ The double layer is fundamental for the conservation of the energy
momentum tensor distribution.

@ Relation between the three new objects
Ta = _ﬁpﬂpm T = ’faﬁ‘zuaﬁ

External flux momentum and external pressure do not exist without the
double layer!



Quadratic gravity

Generalization of the Israel equations of General Relativity:

Field equations on the layer

N R [Tap] + V' Tag = —papVer™|s + Vo(u*ragls — papr®|z),
nonPTap] — Tapk®® = ﬁaﬁﬁualg + pP? (no‘n"’prw + k5|5 kvals) -

Three distinct type of terms:
@ Jumps of the normal component of the energy momentum tensor.
@ Energy momentum in the shell, including its divergence.
@ Double layer strength (plus extrinsic curvature).

These equations agree with Israel equations in absence of double layers.



T,=T5L0+T,(1-0)

hapl =0, [Kag] =0, (as in GR)
That now must be supplemented with

[R]=0, [V,R]=0.

[Rag] =0, [V, Rap] = 0.

This actually implies that the full Riemann tensor and its first derivatives
have no jumps across X:

[Rapau] =0, [VpRapau] = 0.

) 4az + as # 0 and 4a3 + (1 + n)az + 4nay # 0




Quadratic gravity

Consider the proper matching, in GR, of a perfect fluid ball with vacuum:

@ Denote by p©f and p& the isotropic
pressure and density of the fluid as
computed in GR, and by u,, the unit fluid
flow.

@ Y is determined by p©F|s = 0.

@ The discontinuities of the Einstein and
Ricci scalar read:

[Gagl = kPGRUauB|Ev [R] = kPGR-
@ Take this same spacetime to a quadratic theory of gravity and recall

kuap = (2a1+az+2a3)[R)has+(4as + a2) [Gagl, Ta = —Wpupm T = /iaﬂk;/iag.

The proper matching hypersurface in GR will develop double layer and
surface terms in quadratic gravity!



Quadratic gravity

Conclusions

© We have found the generalized Israel equations for sources localized
in a hypersurface X.

@ In general, double layers can develop in the hypersurface X.

o Essential for the conservation of the energy momentum tensor
distribution.

© In absence of double layers, the generalized Israel equations are
identical to the Israel equations derived in GR.

© A solution properly matched in GR is not a solution satisfying a
proper matching in quadratic gravity, in general.
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