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Introduction
Motivation
In this study we are considering non-relativistic bosons


around a spherical object. Therefore it can naturally adapt to
astromical objects surrounding with clouds, such as forming
planets, black holes, among many others.


Steps to follow
We will take fat and slow particles (non-relativistic) around


a spherical object (curved space-time). First, we will examine
the simplest case: ultrastatic metric.Then examine a generic
case: static metric. Afterwards we will rescale everthing back
to the simplest case by a γ metric. Eventually, we turn the
object into a black hole and look for its thermodynamical
features.







Non-Relativistic Limit in Ultrastatic
Background


We are working with a non-relativistic (NR) system on a
Riemanian manifold with an ultrastatic metric


ds2 = −dt2 + hijdx idx j (1)
Klein-Gordon equation (KGE) is given by


−∂2
0ψ −∆hψ + m2ψ + Uψ = 0. (2)


Through curved effects the potential U will include the
scalar curvature term ξR . Via the conformal transformation
the Laplacian becomes


∆h = 1√
h
∂i
√


hhij∂j (3)


For NR particles the large m limit is taken and expansion
parameter x will be defined as (Tm)−1 since it is small.







Bose-Einstein Distribution in the
Flat Space-Time


The distribution function of bosons in the flat space is


ni = 1
eβ(εi−µ) − 1 β = 1


kBT (4)


Therefore the free energy can be written as below even in a
flat space-time


F = 1
β


∑
σ


log(1− e−β(εσ−µ)) (5)


= −
∞∑


k=1


1
kβ ekβµ∑


σ


e−kβεσ (6)







Helmholtz Free Energy
The free energy is


F = 1
β


∑
σ


log
(


1− e−β(εσ−µ)
)
, (7)


which upon expanding the logarithm can also be written as


F = −
∞∑


k=1


1
kβ ekβµ∑


σ


e−kβεσ . (8)


We compansate the order difference between εσ and ε2
σ with


the identity


e−b
√


x = b
2
√
π


∫ ∞
0


du
u3/2 e− b2


4u e−ux (9)


F = − c
2
√
π


∞∑
k=1


ekβµ
∫ ∞


0


du
u3/2 e−


(kβc)2
4u


∑
σ


e−uε2
σ (10)







The Saddle Point Method
Now we derive the NR limit of this expression by taking the


large m limit by the saddle point method. Note that β−1m is
kept fixed in taking this limit.


F = − c
2
√
π


∞∑
k=1


ekβµ
∫ ∞


0


du
u3/2 e−(mc)2


(
(kβm−1)2


4u +u
)


Tre−u(−∆h+U)


(11)
Now the saddle point u is given by the solution of


d
du


[
(kβm−1)2


4u + u
]


= 0 as u = kβ
2m . (12)







Harmonic Sum
Putting everything together we get


F = −
∞∑


k=1


1
kβ ekβµTr e−kβ ( 1


2m (−∆h+U)+mc2) (13)


Let us define x = β
2m . F is in the form of a harmonic sum


F =
∞∑


k=1
f (kx) (14)


where


f (x) = − 1
2mx ex(2mµ)Tr e−x (−∆h+2mU+2(mc)2). (15)







Mellin Transformation
The Mellin transformation is


F̃ (s) =
∫ ∞


0
us−1f (u) du (16)


f (u) = eµuTr ′e−Hu (17)


By using the Mellin transformation, we find asymptotic
behaviour of the free energy from the poles of the below
dictionary.


(MF )(s) �
∑
wk


R(w , k)
(s − w)k+1 (18)


l


F (s) =
∑
wk


R(w , k)(−1)k


k! s−w (log s)k (19)







Extensions and Expansions


The meromorphic extension of the harmonic sum is


F̃(s) = ζ(s)f̃ (s) (20)


where


f̃ (s) = − 1
2m(4π)3/2


∞∑
j=0


aj/2(2(m2c2−mµ))−s− j−5
2 Γ


(
s + j − 5


2


)
.


(21)
The singular expansion of Γ and Laurent series expansion of


the ζ are used to expose the poles of the function F


Γ(x) �
∞∑


l=0


(−1)l


l !
1


x + l , ζ(s) = 1
s − 1 + γ + O(s − 1) (22)







Bose Einstein Condensates in Curved
Space Time


Since our particles are confined in a spherical box, heat
kernel expansion is being used to avoid the expression of the
density of states in the curved space.


Tre∆u = 1
(4πu)3/2


[
a0 + a1/2u1/2 + a1u + . . .


]
(23)


where the heat kernel coefficients can be found according to
the metric.


a0 ∼ V ,
a1/2 ∼ S


(24)







Free Energy and Entropy


Eventually for the ultrastatic case we find


F = − ζ(5/2)
(4π)3/22ma0 (2mT )5/2 − ζ(2)


(4π)3/22ma1/2 (2mT )2


− ζ(3/2)
(4π)3/22m [a1 − 2((mc)2 −mµ)a0] (2mT )3/2 + . . .(25)


therefore


S = +5
2
ζ(5/2)
(4π)3/2 a0 (2mT )3/2 + 2 ζ(2)


(4π)3/2 a1/2 (2mT )


+3
2
ζ(3/2)
(4π)3/2 [a1 − 2((mc)2 −mµ)a0] (2mT )1/2 + . . .(26)







Static Background Case
The new metric is


ds2 = −F (r)dt2 + hijdx idx j . (27)


F (r) is the time lapse function. KGE is written as


−∂2
0Ψ + F√


−g ∂i
√
−ghij∂jΨ−m2F Ψ− ξRΨ = 0 (28)


Through taking the square root and expanding in m−2 the
NR Hamiltonian is found as


H ′NR = − 1
2mF 1/4 1√


−g ∂i
√
−ghij∂iF 1/4 + mF 1/2. (29)







The Optical Metric


The heat kernel expansion requires a pure Laplacian plus a
potential. By introducing the optical metric, we solve this
problem by getting rid of the lapse function.


γij = F−1hij , Ψγ = F d−1Ψ (30)


We get
Hγ = c2[−∆γ + (mc)2 + U ], (31)


with
∆γ = F 3


√
−h


∂iF−1√−hhij∂j (32)


A replica of the static case is obtained.







Including the Physical Surrounding
Eventually F and S turn into


F = F(M,T , ε), and S = S(M,T , ε) (33)


Therefore with the proper limits of a black hole, Hawking
temperature, and brickwall cutoff


M2 = AH


16π , T → TH = 1
8πM and ε→ δ2


8M (34)


Entropy has a general expression for different metrics:
Schwarzschild, Dilaton, and Reissner–Nordström.


S = AH


δ2 f1(m2AH) + ln
(


2AH
1/2


π1/2δ2


)
f2(m2AH) (35)







Results with Surface Gravity


When the proper limits with the surface gravity is being used


AH = π


K 2 , T → TH = K
2π and ε→ K 2δ2


2 (36)


Again entropy is seen to have a universal expression


S =
[


5ζ(5/2)
28π9/2 m3/2K−3/2AH −


ζ(2)
26π7/2 mK−1AH


−3ζ(3/2)
28π7/2 m5/2K−5/2AH + ζ(3/2)


26π7/2 m1/2K−1/2AH


]
1
δ2


(37)







Thank you!!






