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Physical Idea


At GUT energy scales the Hypercharge gauge field 
(photon at low energies) can drive inflation. 


The Hypercharge field is sourced by the quantum 
fermionic charge density.


The interaction Energy between Charge and  
Hypercharge field sources inflation.


S. Alexander,  AM & D. Spergel, JCAP 1304 (2013) 046
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Consistency and Stability


Consistency of the model is ensured thanks to the 
Stueckelberg mechanism. 


There exists exactly one stable solution, and stability has 
been checked numerically. 


Inflation arises without fine tuning, and any effective 
potential must be postulated.


S. Alexander, D. Jyoti, A. Kosowsky & AM, JCAP 1505 (2015) 005
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Ford (abelian), Zhang & Parker (YMC), 
Mukhanov (stochastic fields),  


Sheikh-Jabbari  (Non-abelian gauge), 
Adshead (Chromo Natural), etc...
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Homogeneous background components


Perturbations 


Gauge Field’s Solutions


JCAP04(2013)046
space and time, and ⌘0 some initial time for inflation. For the spatial components of the
background gauge field ~A(0) the equation of motion is


~̈A(0)(⌘) = a4 ~J . (3.5)


Since we will find in section 4 that ~J = 0, this latter gives ~̈A(0) = 0, which decays ~A(0) '
~c+~c


0
/a(⌘). We assume that there is no background electric field filling the Universe, namely


~c = ~c
0
= 0. Nonetheless, isotropy would be preserved even for non vanishing background


electric fields, provided that both |~c| << A(0)
0 and |~c 0 | << A(0)


0 .
The equation of motion for the fluctuations around the background field components


A(0)
µ , which we assume to be of infinitesimal order in some parameter �, are now recovered


to be from the variation of (3.1)


�Ä0(⌘, ~x) � ~r2�A0(⌘, ~x) = 0 , (3.6)


for the �A0(⌘, ~x) component, whose solution is trivially found to be


�A0(⌘, ~x) = �A0 exp(ik0⌘) exp(�i~k~x) . (3.7)


For � ~A(⌘, ~x) we find


� ~̈A�r2� ~A+ ~r⇥ � ~A ✓̇/M⇤ = 0 . (3.8)


Without loss of generality, we can write the solution of (3.8) using circular polarization vector
fields, setting �A3 to be vanishing and assuming the perturbed field to be divergence-less.
We can then cast the field equations in terms of Fourier modes


� ~A(x, ⌘) =


Z
d3k


X
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�A(⌘, k)h ✏h(k)e
ikx , (3.9)


where h = ±1 denotes the two possible helicities. The requirement that � ~A is traceless also
ensures that ~A(⌘, k) is perpendicular to its direction of propagation. Our field equation for
the gauge field then simplifies to


�Ä(⌘, k)h + k2�A(⌘, k)h = �h k �A(⌘, k)h✓̇/M⇤ . (3.10)


Within the assumption of ✓̇ ⇠ const, which will be justified in section 8, the general solution
for the left-handed gauge field is found to be


�A(⌘, k)� = A0
� cosh(�k⌘) + Ã0


� sinh(�k⌘) , (3.11)


where A0
� and Ã0


� are determined by the initial conditions and the growth factor is �2
k =


k(✓̇/M⇤ � k). We will have exponentially growing fields (in conformal time) provided that
�k is real (or k < ✓̇/M⇤). The gauge field, A(⌘, k)+, of opposite helicity also has an oscilla-
tory/exponential behavior, i.e.


�A(⌘, k)+ = A0
+ cos(�k⌘) + Ã0


+ sin(�k⌘) , (3.12)


in which �2k = k(✓̇/M⇤ + k).
However, if the pseudo-scalar field is slowly rolling during inflation, as considered in [7],


we would have recovered ✓̇ = ✓̇0/⌘, with ✓̇0 constant. Accordingly, the equation for the
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in which now vR, r(~k, ⌘) and vL, r(~k, ⌘) are right-handed and left-handed one-spinors with
helicity r. The anti-commutation rules (4.10) and (4.12) also imply the relation
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which we further impose to be subjected to ur(~k, ⌘)vr0(~k, ⌘) = 0 = vr0(~k, ⌘)vr(~k, ⌘), following
the normalization required in [10, 11].
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p
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these results, it is straightforward to find [10, 11]
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in which a(⌘) is the de Sitter conformal factor and which has been generalized in [11] to
the FLRW background, and in which " denotes an infinitesimal displacement on the imag-
inary time line. We then consider4 that the amplitude of the vacuum expectation value
of the fermionic current components may be easily derived from the advanced or retarded
propagator entering the definition of the Feynman propagator (4.17)
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in which we have used metric compatibility and expanded the hypergeometric function.
We may now focus on the components of the fermionic current, that we select by tracing


the above result (4.19) with the �I matrices. We then get that only the temporal component
of the fermonic current is non-vanishing and that it can be connected to the relevant results
concerning the fermionic propagators in de Sitter space times [11], for fermions with a bare
mass m acting as a regulator. The main result of this section then turns out to be
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4We acknowledge our referee for pointing out this cut-o↵ independent way of obtaining the expectation
value of the fermionic current on the Bunch-Davies vacuum.
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Anisotropic background components redshift away in the Einstein EOM
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Stuekelberg mechanism 


Scalar field as a DOF of a massive gauge field 


invariant under


Dynamics 


S. Alexander, D. Jyoti, A. Kosowsky & AM,  JCAP 1505 (2015) 005
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Conservation and dynamics 
Conservation of the total energy momentum tensor


Dynamical System
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Attractor solution 
S. Alexander, D. Jyoti, A. Kosowsky & A.M. , JCAP 1505 (2015) 005
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Phase space trajectories
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S. Alexander, D. Jyoti, A. Kosowsky & A.M. , JCAP 1505 (2015) 005
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Stability landscape


Initial conditions ending up at the inflationary fixed point 
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S. Alexander, D. Jyoti, A. Kosowsky & A.M. , JCAP 1505 (2015) 005
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Phenomenology
S. Alexander, S. Brahma, P. Dona,  A.M. & Z. Yang, to appear soon 


Power spectrum of scalar perturbations from gauge fields 


Chern-SimonsGauge fields contribution
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Chern-Simons term


Baryogensesis in the first version of the model


End Inflation (force term for the scalar field EOM)


Conformally invariant: consistent with Power spectrum 
invariance
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In progress…


Phenomenological analysis: constraining the parameters 


Reheating mechanism from fermion bilinears?


Non-gaussianeities and cross-correlation functions 


Stay tuned!
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Inflation and The Standard Model
-  Guth originally proposed inflation by using ideas from: 


    (1)  Condensed Matter Physics: (Spontaneous      
symmetry breaking). 


    (2) Particle Physics: SU(5) GUT.    


-  This idea did not work (too much fine-tuning in 
parameters of theory).


Open Questions for Inflation


• What is the identity of the inflaton field?


• What happens “at or before” the Big-Bang singularity?
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Structure formation: heuristics 
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 Inflation: success and limits


Criteria to bear in mind


Horizon � Hubble radius


Fluctuations mode have � � H�1
for a long period (squeezing)


Mechanism accounting for scale�invariant primordial spectrum


Deficiencies of Inflation


Cosmological singularity: not a theory of very early Universe


High level of arbitrariness in the mechanism involving scalar field


Trans�Planckian problem for cosmological perturbations
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Inflation


i) Horizon problem


ii) Flatness problem


iii) Size/entropy problem


ȧ2


a2
⌘ H2 =


8⇡G


3c4
% % = %� + %rad + %matt. + %Kds


2 = dt


2 � a


2(t)[dx2 + dy


2 + dz


2]


%K/%rad ⇠ a(t)2


% ' %� ' const ! a(t) = eHt


Universe empty, then ��


with a bonus!
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perturbations originate as quantum vacuum fluctuations!
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Fermionic Current II
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is then defined by the relation
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state |0i of the theory. This latter in turn is defined by the action of the Ladder operators
a~k, r|0i = b~k, r|0i = 0 and corresponds to the Bunch-Davies vacuum state.
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the FLRW background, and in which " denotes an infinitesimal displacement on the imag-
inary time line. We then consider4 that the amplitude of the vacuum expectation value
of the fermionic current components may be easily derived from the advanced or retarded
propagator entering the definition of the Feynman propagator (4.17)
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in which we have used metric compatibility and expanded the hypergeometric function.
We may now focus on the components of the fermionic current, that we select by tracing


the above result (4.19) with the �I matrices. We then get that only the temporal component
of the fermonic current is non-vanishing and that it can be connected to the relevant results
concerning the fermionic propagators in de Sitter space times [11], for fermions with a bare
mass m acting as a regulator. The main result of this section then turns out to be
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4We acknowledge our referee for pointing out this cut-o↵ independent way of obtaining the expectation
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in which we have used metric compatibility and expanded the hypergeometric function.
We may now focus on the components of the fermionic current, that we select by tracing


the above result (4.19) with the �I matrices. We then get that only the temporal component
of the fermonic current is non-vanishing and that it can be connected to the relevant results
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in which we have used metric compatibility and expanded the hypergeometric function.
We may now focus on the components of the fermionic current, that we select by tracing


the above result (4.19) with the �I matrices. We then get that only the temporal component
of the fermonic current is non-vanishing and that it can be connected to the relevant results
concerning the fermionic propagators in de Sitter space times [11], for fermions with a bare
mass m acting as a regulator. The main result of this section then turns out to be
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in which we have used metric compatibility and expanded the hypergeometric function.
We may now focus on the components of the fermionic current, that we select by tracing
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mass m acting as a regulator. The main result of this section then turns out to be
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