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Physical Idea

At GUT energy scales the Hypercharge gauge field 
(photon at low energies) can drive inflation. 

The Hypercharge field is sourced by the quantum 
fermionic charge density.

The interaction Energy between Charge and  
Hypercharge field sources inflation.

S. Alexander,  AM & D. Spergel, JCAP 1304 (2013) 046
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Consistency and Stability

Consistency of the model is ensured thanks to the 
Stueckelberg mechanism. 

There exists exactly one stable solution, and stability has 
been checked numerically. 

Inflation arises without fine tuning, and any effective 
potential must be postulated.

S. Alexander, D. Jyoti, A. Kosowsky & AM, JCAP 1505 (2015) 005
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Ä0(t) = a4J0

~̈A(t) = a4 ~J

Atot

0

= A
0

+ �A
0

~A
tot

= ~A+ � ~A

Gauge Field’s Equations

vanishing

a = a0 expH0t

Ansatz

Vector field

Gauge potential

Homogenous background

Inhomogenous perturbations

GR21 NYC, 12th July 2016

Ford (abelian), Zhang & Parker (YMC), 
Mukhanov (stochastic fields),  

Sheikh-Jabbari  (Non-abelian gauge), 
Adshead (Chromo Natural), etc...
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� ~A(k) = � ~A0 cos(�kt) + � ~A0
0 sin(�kt)

�A0(k) = �A0 exp(ık0t)

A0 = Ā0a

~A = ~c+ ~c0/a

Homogeneous background components

Perturbations 

Gauge Field’s Solutions
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space and time, and ⌘0 some initial time for inflation. For the spatial components of the
background gauge field ~A(0) the equation of motion is

~̈A(0)(⌘) = a4 ~J . (3.5)

Since we will find in section 4 that ~J = 0, this latter gives ~̈A(0) = 0, which decays ~A(0) '
~c+~c

0
/a(⌘). We assume that there is no background electric field filling the Universe, namely

~c = ~c
0
= 0. Nonetheless, isotropy would be preserved even for non vanishing background

electric fields, provided that both |~c| << A(0)
0 and |~c 0 | << A(0)

0 .
The equation of motion for the fluctuations around the background field components

A(0)
µ , which we assume to be of infinitesimal order in some parameter �, are now recovered

to be from the variation of (3.1)

�Ä0(⌘, ~x) � ~r2�A0(⌘, ~x) = 0 , (3.6)

for the �A0(⌘, ~x) component, whose solution is trivially found to be

�A0(⌘, ~x) = �A0 exp(ik0⌘) exp(�i~k~x) . (3.7)

For � ~A(⌘, ~x) we find

� ~̈A�r2� ~A+ ~r⇥ � ~A ✓̇/M⇤ = 0 . (3.8)

Without loss of generality, we can write the solution of (3.8) using circular polarization vector
fields, setting �A3 to be vanishing and assuming the perturbed field to be divergence-less.
We can then cast the field equations in terms of Fourier modes

� ~A(x, ⌘) =

Z
d3k

X

h

�A(⌘, k)h ✏h(k)e
ikx , (3.9)

where h = ±1 denotes the two possible helicities. The requirement that � ~A is traceless also
ensures that ~A(⌘, k) is perpendicular to its direction of propagation. Our field equation for
the gauge field then simplifies to

�Ä(⌘, k)h + k2�A(⌘, k)h = �h k �A(⌘, k)h✓̇/M⇤ . (3.10)

Within the assumption of ✓̇ ⇠ const, which will be justified in section 8, the general solution
for the left-handed gauge field is found to be

�A(⌘, k)� = A0
� cosh(�k⌘) + Ã0

� sinh(�k⌘) , (3.11)

where A0
� and Ã0

� are determined by the initial conditions and the growth factor is �2
k =

k(✓̇/M⇤ � k). We will have exponentially growing fields (in conformal time) provided that
�k is real (or k < ✓̇/M⇤). The gauge field, A(⌘, k)+, of opposite helicity also has an oscilla-
tory/exponential behavior, i.e.

�A(⌘, k)+ = A0
+ cos(�k⌘) + Ã0

+ sin(�k⌘) , (3.12)

in which �2k = k(✓̇/M⇤ + k).
However, if the pseudo-scalar field is slowly rolling during inflation, as considered in [7],

we would have recovered ✓̇ = ✓̇0/⌘, with ✓̇0 constant. Accordingly, the equation for the
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Fermionic
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in which now vR, r(~k, ⌘) and vL, r(~k, ⌘) are right-handed and left-handed one-spinors with
helicity r. The anti-commutation rules (4.10) and (4.12) also imply the relation

X

r

uar(~k, ⌘)u
⇤ a
r (~k, ⌘) + var (�~k, ⌘)v⇤ ar (�~k, ⌘) = �ab , (4.15)

which we further impose to be subjected to ur(~k, ⌘)vr0(~k, ⌘) = 0 = vr0(~k, ⌘)vr(~k, ⌘), following
the normalization required in [10, 11].

Solving the Dirac equation for f±r(~k, ⌘) ⌘ [uL, r(~k, ⌘)+uR, r(~k, ⌘)]/
p
2 for the de Sitter

background, we find [10, 11] for a mode ~k = kk̂

f±r(�k⌘) = ± ei
⇡
2 (⌫±+ 1

2 )

r
�⇡k⌘

4
H(1)

⌫± (�k⌘) , (4.16)

whereH(1)
⌫± are Hankel function of the first kind of order ⌫± = 1

2⌥i⇣, with ⇣ = m/H. Identical

solutions to f±r(~k, ⌘) in (4.16) are found for g±r(k, ⌘) ⌘ [vL, r(k, ⌘) + vR, r(k, ⌘)]/
p
2. Using

these results, it is straightforward to find [10, 11]
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�(x, y) = a(x)a(y)H2�x2 , �x2 = (|⌘x � ⌘y|� i")2 + (~x� ~y) · (~x� ~y), (4.17)

in which a(⌘) is the de Sitter conformal factor and which has been generalized in [11] to
the FLRW background, and in which " denotes an infinitesimal displacement on the imag-
inary time line. We then consider4 that the amplitude of the vacuum expectation value
of the fermionic current components may be easily derived from the advanced or retarded
propagator entering the definition of the Feynman propagator (4.17)

h0|JI |0i ' limy!x Sab(x, y)�Iba . (4.18)

Taking the limit in which the two space-time points coincide, namely y ! x, and the limit
in which the infinitesimal displacement shrinks to zero, i.e. " ! 0, we easily recover

Sab(x, y) ' H2
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in which we have used metric compatibility and expanded the hypergeometric function.
We may now focus on the components of the fermionic current, that we select by tracing

the above result (4.19) with the �I matrices. We then get that only the temporal component
of the fermonic current is non-vanishing and that it can be connected to the relevant results
concerning the fermionic propagators in de Sitter space times [11], for fermions with a bare
mass m acting as a regulator. The main result of this section then turns out to be

J0 ' 1

4⇡2
m2H +O

✓
m3

H3

◆
, (4.20)

4We acknowledge our referee for pointing out this cut-o↵ independent way of obtaining the expectation
value of the fermionic current on the Bunch-Davies vacuum.
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Anisotropic background components redshift away in the Einstein EOM
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Stuekelberg mechanism 

Scalar field as a DOF of a massive gauge field 

invariant under

Dynamics 

S. Alexander, D. Jyoti, A. Kosowsky & AM,  JCAP 1505 (2015) 005
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Conservation and dynamics 
Conservation of the total energy momentum tensor

Dynamical System
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Attractor solution 
S. Alexander, D. Jyoti, A. Kosowsky & A.M. , JCAP 1505 (2015) 005
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Phase space trajectories

GR21 NYC, 12th July 2016

S. Alexander, D. Jyoti, A. Kosowsky & A.M. , JCAP 1505 (2015) 005
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Stability landscape

Initial conditions ending up at the inflationary fixed point 
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S. Alexander, D. Jyoti, A. Kosowsky & A.M. , JCAP 1505 (2015) 005
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Phenomenology
S. Alexander, S. Brahma, P. Dona,  A.M. & Z. Yang, to appear soon 

Power spectrum of scalar perturbations from gauge fields 

Chern-SimonsGauge fields contribution
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Scalar field: tilt 
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Chern-Simons term

Baryogensesis in the first version of the model

End Inflation (force term for the scalar field EOM)

Conformally invariant: consistent with Power spectrum 
invariance

GR21 NYC, 12th July 2016 14/15
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In progress…

Phenomenological analysis: constraining the parameters 

Reheating mechanism from fermion bilinears?

Non-gaussianeities and cross-correlation functions 

Stay tuned!
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Inflation and The Standard Model
-  Guth originally proposed inflation by using ideas from: 

    (1)  Condensed Matter Physics: (Spontaneous      
symmetry breaking). 

    (2) Particle Physics: SU(5) GUT.    

-  This idea did not work (too much fine-tuning in 
parameters of theory).

Open Questions for Inflation

• What is the identity of the inflaton field?

• What happens “at or before” the Big-Bang singularity?

GR21 NYC, 12th July 2016



Structure formation: heuristics 
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 Inflation: success and limits

Criteria to bear in mind

Horizon � Hubble radius

Fluctuations mode have � � H�1
for a long period (squeezing)

Mechanism accounting for scale�invariant primordial spectrum

Deficiencies of Inflation

Cosmological singularity: not a theory of very early Universe

High level of arbitrariness in the mechanism involving scalar field

Trans�Planckian problem for cosmological perturbations

GR21 NYC, 12th July 2016



Inflation

i) Horizon problem

ii) Flatness problem

iii) Size/entropy problem

ȧ2

a2
⌘ H2 =

8⇡G

3c4
% % = %� + %rad + %matt. + %Kds

2 = dt

2 � a

2(t)[dx2 + dy

2 + dz

2]

%K/%rad ⇠ a(t)2

% ' %� ' const ! a(t) = eHt

Universe empty, then ��

with a bonus!

Causal mechanism for generating primordial cosmological (Chibisov & Mukhanov 1981)

perturbations originate as quantum vacuum fluctuations!

%K/%� = 1/a(t)2
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Fermionic Current II

JCAP04(2013)046

is then defined by the relation

iSab
F (x, y) = h0|T{ b a(x)b 

b
(y)}|0i

= ✓(⌘x � ⌘y) h0| b a(x)b 
b
(y)|0i � ✓(⌘y � ⌘x) h0|b 

b
(y) b a(x)|0i (4.7)

where a and b label spinor indices of the Dirac fields b a(x). Notice now that rescaling the

fermionic spinor as �(x) = a
3
2 (⌘) (x) we may simplify the equation of motion to be written

only in terms of partial derivatives

i�I@I�(x)� a(⌘)m�(x) = 0 . (4.8)

Variation of the density Lagrangian with respect to  ̇(x) provides the conjugate momentum
to b (x). The two operators undergo second quantization through and are subjected to the
anti-commutation relations that are fundamental to the Dirac quantum fields

{ b a(~x, t), a
3(t) b ⇤

b (~y, t)} = i�ab�
3(~x� ~y) , (4.9)

imposed on space-like surfaces. It follows that

{b�a(~x, t), b�⇤
b(~y, t)} = i�ab�

3(~x� ~y) , {b�a(~x, t), b�b(~y, t)} = 0 , {b�a(~x, t), b�⇤
b(~y, t)} = 0 .

(4.10)
Quantized fields may be expanded as

b�(x) =

Z
d3~k

(2⇡)3

X

r

â~k, r ur(
~k, ⌘)ei

~k·~x + b̂†~k, r
vr(~k, ⌘)e

�i~k·~x ,

b�(x) =

Z
d3~k

(2⇡)3

X

r

â†~k, r
ur(~k, ⌘)e

�i~k·~x + b̂~k, r vr(
~k, ⌘)ei

~k·~x , (4.11)

where ur(~k, ⌘) and vr(~k, ⌘) are four-spinors labeled with respect to their conformal spatial
momentum ~k and the helicity, namely the projection of the spin in the direction of motion,
r = ±1. The anti-commutation rules (4.10) imply that

{â~k, r, â
†
~k0, r0

} = (2⇡)3�3(~k � ~k0)�r,r0 , {b̂~k, r, b̂
†
~k0, r0

} = (2⇡)3�3(~k � ~k0)�r,r0 . (4.12)

The fermionic Fock space can be then defined through the action of Ladder operators a†~k, r
and

b†~k, r
, which obey the Fermi-Dirac statistics as derived from (4.9) and (4.12), on the vacuum

state |0i of the theory. This latter in turn is defined by the action of the Ladder operators
a~k, r|0i = b~k, r|0i = 0 and corresponds to the Bunch-Davies vacuum state.

Four-spinors may be further decomposed into a direct product of two-spinors (see
e.g. [10, 11]) finding

u(~k, ⌘) =
X

r

ur(~k, ⌘) =
X

r

 
uL, r(~k, ⌘)

uR, r(~k, ⌘)

!
⌦ ⇠r , (4.13)

in which uL, r(~k, ⌘) and uR, r(~k, ⌘) are left-handed and right-handed one-spinors with helicity

r, and ⇠r is the helicity two-eigenspinor defined by
b~k · ~� ⇠r = r ⇠r. In a similar way

v(~k, ⌘) =
X

r

vr(~k, ⌘) =
X

r

 
vR, r(~k, ⌘)

vL, r(~k, ⌘)

!
⌦ ⇠r , (4.14)
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in which a(⌘) is the de Sitter conformal factor and which has been generalized in [11] to
the FLRW background, and in which " denotes an infinitesimal displacement on the imag-
inary time line. We then consider4 that the amplitude of the vacuum expectation value
of the fermionic current components may be easily derived from the advanced or retarded
propagator entering the definition of the Feynman propagator (4.17)
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in which we have used metric compatibility and expanded the hypergeometric function.
We may now focus on the components of the fermionic current, that we select by tracing

the above result (4.19) with the �I matrices. We then get that only the temporal component
of the fermonic current is non-vanishing and that it can be connected to the relevant results
concerning the fermionic propagators in de Sitter space times [11], for fermions with a bare
mass m acting as a regulator. The main result of this section then turns out to be
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4We acknowledge our referee for pointing out this cut-o↵ independent way of obtaining the expectation
value of the fermionic current on the Bunch-Davies vacuum.
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in which we have used metric compatibility and expanded the hypergeometric function.
We may now focus on the components of the fermionic current, that we select by tracing
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in which we have used metric compatibility and expanded the hypergeometric function.
We may now focus on the components of the fermionic current, that we select by tracing

the above result (4.19) with the �I matrices. We then get that only the temporal component
of the fermonic current is non-vanishing and that it can be connected to the relevant results
concerning the fermionic propagators in de Sitter space times [11], for fermions with a bare
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in which we have used metric compatibility and expanded the hypergeometric function.
We may now focus on the components of the fermionic current, that we select by tracing

the above result (4.19) with the �I matrices. We then get that only the temporal component
of the fermonic current is non-vanishing and that it can be connected to the relevant results
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