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The Memory Effect


Memory—a permanent change in relative positions of test
particles after passage of gravitational wave.


How do we isolate radiative gravitational effects (vs., e.g.,
Hubble flow)? In an asymptotically flat spacetime, place the
detector near I +; “peel off” dominant 1/r term of curvature.


Can we define memory in a spacetime that is not
asymptotically flat?







The Memory Effect for Idealized Sources


AT and Wald (2014); AT, Bieri, Garfinkle, and Wald (2014):


What general features of the memory effect can we learn from
studying particle interactions?







Retarded metric perturabation:


hij ∼
Θ(t− r)


r
.


Electric components of the curvature:


R j
i00 ∼


δ′(t− r)
r


.


Integrated geodesic deviation equation:


∆Dj =


∫ ∞
−∞


dτ


∫ τ


−∞
dτ ′R j


i00 (τ ′)Di.


Memory effect:


∆Di ∼ Θ(t− r)
r


.







Takeaways


Memory occurs instantaneously when the detector intersects
the decay event’s future light cone.


Other effects (“velocity kick”) take place over long times, carry
higher orders of 1/r.


Discrete, idealized particle sources → discrete, idealized
memory effect.


Attributable to single, easily identifiable feature in curvature
(δ′)—one which can be generalized unambiguously to waves on
backgrounds without notion of I +.







Memory Effect in General Spacetimes


Our model of memory—instantaneous change in relative
separations of detector test particles, caused by δ′ curvature
discontinuities radiating away from point-particle interactions.


Only one event contributes to idealized memory and all
spacetimes are locally comparable—we can compare memory of
“similar sources” in different spacetimes.


We will concentrate on comparing memory of similar sources on
Minkowski and FLRW backgrounds.







Gravitational Discontinuities on FLRW Backgrounds


Spatially flat FLRW Background:


ds2 = a2(η)
(
−dη2 + dx2 + dy2 + dz2


)
How do we get δ′ term in curvature? Durrer (2008):


δR j
i00 = −1


2


[(
∂i∂k −


1


3
δik∇2


)
Φ +


(
Ψ̈ +


ȧ


a


(
Ψ̇− Φ̇


))
δik


− ∂(i
(


Ξ̇k) +
ȧ


a
Ξk)


)
+


(
ḧik +


ȧ


a
ḣik


)]
δjk


Φ, Ψ, Ξi, hij—gauge-invariant metric potential fields: Bardeen
(1980), Durrer (1990).


Memory requires Θ(η − r)-discontinuity in Φ, Ψ, Ξi, hij .


Only hij can possess discontinuities away from particle sources.







Tensor-Mode Perturbations


For gab = a2 (ηab + hab) and Tab, tensor-mode perturbations are
found with a transverse-traceless projector TT:


hij = TT[hµν ] ,


Tij = TT[Tµν ] .


Tensor-mode perturbations satisfy the wave equation


−ḧij − 2
ȧ


a
ḣij +∇2hij = −16πTij .







The Retarded Gravitational Field


Two spacetimes:
(
M,ηab + h̃ab


)
,
(
M,a2(ηab + hab)


)
covered by


(η, r) with locally similar source events T̃ab, Tab.


−¨̃hij +∇2h̃ij = −16πT̃ij ,


G̃(x, x′) =
1


4π
δ
(
−(η − η′)2 + |r− r′|2


)
Θ(η − η′) ;


−ḧij − 2
ȧ


a
ḣij +∇2hij = −16πTij ,


G(x, x′) =
1


4π


a(η′)


a(η)
δ
(
−(η − η′)2 + |r− r′|2


)
Θ(η − η′)


+ V (x, x′)Θ
(
(η − η′)2 − |r− r′|


)
Θ(η − η′) .







“Direct terms” in the retarded fields—


h̃dir
ij (x) = 4


∫
d4x′δ


(
−(η − η′)2 + |r− r′|2


)
Θ(η − η′)T̃ij(x


′)


hdir
ij (x) = 4


∫
d4x′


a(η′)


a(η)
δ
(
−(η − η′)2 + |r− r′|2


)
Θ(η−η′)Tij(x


′)


—are discontinuous away from source; they do cause memory.


V (x, x′) is model-dependent, but smooth—the “tail term”


htail
ij (x) = 4


∫
d4x′V (x, x′)Θ


(
(η − η′)2 − |r− r′|


)
Θ(η−η′)Tij(x


′)


is continuous away from source; it doesn’t cause memory.







We are only concerned with hdir
ij , but we drop the “dir”


superscript.


Normalize a = 1 at the source event. Solving the field equations:


hij(η, r) =
1


a(η)
h̃ij(η, r) .


To leading order:


δR j
i00 (η, r) =


1


a(η)
R̃ j
i00 (η, r) .







Comparison of Memories


∆Di(r) =
1


1 + z
∆D̃i(r)


(r is proper distance at emission)


∆Di(d) = ∆D̃i(d)


(d is proper distance at detection)


∆Di(dL) = (1 + z)∆D̃i(dL)


(dL is luminosity distance)






