
Adam_Pound_-_Pound_(1).pdf


Why? Formalism Quasicircular orbits


Second-order self-force: a progress report


Adam Pound
in collaboration with Wardell, Warburton, Miller, Barack; Moxon,


Flanagan, Hinderer; Yamada, Tanaka, Isoyama


University of Southampton


14 July 2016


Adam Pound Second-order self-force: a progress report 1 / 12







Why? Formalism Quasicircular orbits


Outline


1 Why second-order self-force?


2 Self-force theory: replacing an extended object with a puncture


3 First application: quasicircular orbits in Schwarzschild
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Why? Formalism Quasicircular orbits


Gravitational waves and comparable-mass binaries


first directly detected waves
were generated by inspiral and
merger of two comparable-mass
black holes


ground-based detectors will
continue to observe such
systems
but they will not be able to
observe binaries with very
unequal masses
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Why? Formalism Quasicircular orbits


Extreme-mass-ratio inspirals (EMRIs)


space-based detector eLISA will
observe extreme-mass ratio
inspirals of stellar-mass BHs or
neutron stars into massive BHs


small object spends
∼ M/m ∼ 105 orbits near BH
⇒ unparalleled probe of
strong-field region around BH
measure deviations from GR
(with & 10 times precision of
other probes)
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Why? Formalism Quasicircular orbits


Modeling EMRIs: why second-order self-force?


highly relativistic, strong fields


⇒ can’t use post-Newtonian theory


disparate lengthscales


⇒ can’t use numerical relativity


long timescale: inspiral is slow,
produces ∼ M


m ∼ 105 wave cycles


⇒ need a model that is accurate
over those ∼ 105 cycles


treat m as source of perturbation of M ’s metric gµν :


gµν = gµν + εh1
µν + ε2h2


µν + . . .


represent motion of m via worldline zµ satisfying
D2zµ


dτ2 = εFµ
1 + ε2Fµ


2 + . . .


scaling arguments show we need Fµ
2 for accurate model
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Why? Formalism Quasicircular orbits


Matched asymptotic expansions


equation of motion and
form of field near object
found by local analysis in
buffer region
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Why? Formalism Quasicircular orbits


Punctures and EOM [Detweiler & Whiting; Barack et al; AP; Gralla; Harte]


split field into “self-field” and “effective field”
locally replace self-field with singular field


replaces object with a puncture, a local singularity in the field,
moving on zµ, equipped with the object’s multipole moments
zµ geodesic in gµν + hR


µν :


D2zµ


dτ2 = − 1
2 (gµν + uµuν)


(
gν


ρ − hR
ν


ρ
) (


2hR
ρσ;λ − hR


σλ;ρ
)


uσuλ+O(m3)
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Why? Formalism Quasicircular orbits


How you replace an object with a worldline


in region near zµ, move hS
µν to RHS of field equation, solve for hR


µν


out here, solve
for physical field


in here, solve
for regular field


use in eq. of
mot. to evolve


here, change variables
using
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Why? Formalism Quasicircular orbits


Quasicircular orbits [AP, Wardell, Warburton, Miller, Barack]


Introduce slow time t̃ ∼ εt
multiscale expansion of the
worldline:


I radius rp = r0(t̃) + εr1(t̃) + . . .
I frequency


Ω = Ω0(t̃) + εΩ1(t̃) + . . .
I orbital phase φp = 1


ε


∫
Ωdt̃


multiscale expansion of the field:


hn
µν =


∑
ilm


hn
ilm(t̃, r)e−imφp(t̃)Y ilm


µν


solve numerically for hn
ilm at fixed t̃ using standard frequency-domain


methods from 1st order
evolve t̃ dependence using equation of motion
we take a “snapshot”, doing our calculations at some t̃ = t̃0
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Why? Formalism Quasicircular orbits


Matched expansions [AP,Moxon,Flanagan,Hinderer,Yamada,Isoyama,Tanaka]


multiscale
expansion


here


post-
Minkowski
expansion


here


near-
horizon
expansion
here


multiscale expansion works on
large scales, but not globally
so use different expansions in
different regions


post-Minkowski and near-horizon expansions provide BCs h∞µν and
hHµν for multiscale expansion
we subtract the BCs from the field, numerically solve ODEs for
residual hRµν = hµν − hS


µν − h∞µν − hHµν ,
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Why? Formalism Quasicircular orbits


` = 0, dissipative sector


field equation:


∂2
r hR2


tr ∼ δ2Rtr [h1, h1]
− ∂2


r hS2
tr


− ∂t̃h1
tt


2 5 10 20 50 100


10- 7


10- 5


0.001


What comes out of the solution?
balance law: Ė0 + ˙δMBH = F∞
first major result/consistency check of numerical implementation
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Why? Formalism Quasicircular orbits


` = 0, conservative sector


field equation:


∂2
r hR2


tt ∼ δ2Rtt [h1, h1]
− ∂2


r hS2
tt


− ∂2
r (h∞tt + hHtt )


10-5 0.01 10 104
10-13


10-8


0.001


100.000
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S
ou
rc
e


What comes out of the solution?
binding energy E = MBondi −m −MBH
—we haven’t quite computed this yet
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Why? Formalism Quasicircular orbits


Conclusion


Status of formalism
basic formalism in place
practical multiscale expansion under development


Status of implementations
everything is working properly for quasicircular orbits in
Schwarzschild—just more labour needed
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