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Why? Formalism Quasicircular orbits

Gravitational waves and comparable-mass binaries

first directly detected waves
were generated by inspiral and
merger of two comparable-mass
black holes

ground-based detectors will
continue to observe such
systems
but they will not be able to
observe binaries with very
unequal masses
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Why? Formalism Quasicircular orbits

Extreme-mass-ratio inspirals (EMRIs)

space-based detector eLISA will
observe extreme-mass ratio
inspirals of stellar-mass BHs or
neutron stars into massive BHs

small object spends
∼ M/m ∼ 105 orbits near BH
⇒ unparalleled probe of
strong-field region around BH
measure deviations from GR
(with & 10 times precision of
other probes)
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Why? Formalism Quasicircular orbits

Modeling EMRIs: why second-order self-force?

highly relativistic, strong fields

⇒ can’t use post-Newtonian theory

disparate lengthscales

⇒ can’t use numerical relativity

long timescale: inspiral is slow,
produces ∼ M

m ∼ 105 wave cycles

⇒ need a model that is accurate
over those ∼ 105 cycles

treat m as source of perturbation of M ’s metric gµν :

gµν = gµν + εh1
µν + ε2h2

µν + . . .

represent motion of m via worldline zµ satisfying
D2zµ

dτ2 = εFµ
1 + ε2Fµ

2 + . . .

scaling arguments show we need Fµ
2 for accurate model
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Why? Formalism Quasicircular orbits

Matched asymptotic expansions

equation of motion and
form of field near object
found by local analysis in
buffer region
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Why? Formalism Quasicircular orbits

Punctures and EOM [Detweiler & Whiting; Barack et al; AP; Gralla; Harte]

split field into “self-field” and “effective field”
locally replace self-field with singular field

replaces object with a puncture, a local singularity in the field,
moving on zµ, equipped with the object’s multipole moments
zµ geodesic in gµν + hR

µν :

D2zµ

dτ2 = − 1
2 (gµν + uµuν)

(
gν

ρ − hR
ν

ρ
) (

2hR
ρσ;λ − hR

σλ;ρ
)

uσuλ+O(m3)
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Why? Formalism Quasicircular orbits

How you replace an object with a worldline

in region near zµ, move hS
µν to RHS of field equation, solve for hR

µν

out here, solve
for physical field

in here, solve
for regular field

use in eq. of
mot. to evolve

here, change variables
using
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Why? Formalism Quasicircular orbits

Quasicircular orbits [AP, Wardell, Warburton, Miller, Barack]

Introduce slow time t̃ ∼ εt
multiscale expansion of the
worldline:

I radius rp = r0(t̃) + εr1(t̃) + . . .
I frequency

Ω = Ω0(t̃) + εΩ1(t̃) + . . .
I orbital phase φp = 1

ε

∫
Ωdt̃

multiscale expansion of the field:

hn
µν =

∑
ilm

hn
ilm(t̃, r)e−imφp(t̃)Y ilm

µν

solve numerically for hn
ilm at fixed t̃ using standard frequency-domain

methods from 1st order
evolve t̃ dependence using equation of motion
we take a “snapshot”, doing our calculations at some t̃ = t̃0
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Why? Formalism Quasicircular orbits

Matched expansions [AP,Moxon,Flanagan,Hinderer,Yamada,Isoyama,Tanaka]

multiscale
expansion

here

post-
Minkowski
expansion

here

near-
horizon
expansion
here

multiscale expansion works on
large scales, but not globally
so use different expansions in
different regions

post-Minkowski and near-horizon expansions provide BCs h∞µν and
hHµν for multiscale expansion
we subtract the BCs from the field, numerically solve ODEs for
residual hRµν = hµν − hS

µν − h∞µν − hHµν ,
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Why? Formalism Quasicircular orbits

` = 0, dissipative sector

field equation:

∂2
r hR2

tr ∼ δ2Rtr [h1, h1]
− ∂2

r hS2
tr

− ∂t̃h1
tt

2 5 10 20 50 100

10- 7

10- 5

0.001

What comes out of the solution?
balance law: Ė0 + ˙δMBH = F∞
first major result/consistency check of numerical implementation
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Why? Formalism Quasicircular orbits

` = 0, conservative sector

field equation:

∂2
r hR2

tt ∼ δ2Rtt [h1, h1]
− ∂2

r hS2
tt

− ∂2
r (h∞tt + hHtt )

10-5 0.01 10 104
10-13

10-8

0.001

100.000

107

S
ou
rc
e

What comes out of the solution?
binding energy E = MBondi −m −MBH
—we haven’t quite computed this yet
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Why? Formalism Quasicircular orbits

Conclusion

Status of formalism
basic formalism in place
practical multiscale expansion under development

Status of implementations
everything is working properly for quasicircular orbits in
Schwarzschild—just more labour needed
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